TP 6 : GEN IA, MLOPS &
RAG

Introduction to Gen IA & RAG


mailto:luc.marchand.pro@proton.me
mailto:maxence.tallon@gmail.com

Global Syllabus

Introduction and main Kafka & event driven
concepts architectures

SQL, set up env and

practical work Spark & Delta

NoSQL world Warehouse, DBT & Bl

Introduction to Big Data &

Data Engineering IA - MLOps & RAG



Courses Syllabus

Introduction To GEN IA Retrieval- Augmented
Generation Concepts

ML Ops Practice



01

Introduction to Gen IA



L'IA generative

LIA générative est une branche de l'intelligence artificielle qui utilise des modéles de deep learning pour créer du
contenu original a partir de données existantes.

Ces modeles, souvent des réseaux neuronaux profonds, sont entrainés sur de vastes ensembles de données pour
identifier des schémas et générer des textes, images, vidéos, ou autres formes de contenu



1966 ELIZA:

File Edit Options Buffers Tools Help

O X OE > P UEQRGP?

'Y I am the psychotherapist. Please, describe your problems. 2
$Each time

yvou are finished talking, type RET twice.

I have a terrible headache.

Maybe you should consult a doctor of medicine, I am a psychi®
Satrist.

Okay, I'll do that then.
Can you elaborate on that?

What are you talking about? Mo I cannot elaborate. See you 1@
Sater.

Why do you say that?
Now you're just talking nonsense!
What makes you believe now I am just talking nonsense?

You are not making any sense.

|7 Perhaps your plans have something to do with this.
-u:** *doctor* (B S R R e N e e e e |

X




2005: SCigen

An Automatic CS Paper Generator :

SClgen est un générateur de faux articles scientifiques utilisant une grammaire sans contexte pour créer des textes
absurdes imitant des recherches en informatique.

Créé en 2005 par des chercheurs du MIT pour dénoncer le manque de rigueur des conférences, il généere des articles
complets avec graphiques et citations.

Utilisé principalement par des universitaires chinois pour soumettre des articles frauduleux, il a conduit a la
rétractation de 122 articles et a la création de logiciels de détection.



2017: Google Révolutionne tout

Google introduit le premier Transformer, qui va devenir rapidement la référence pour traiter
les sujets de NLP.

GPT -> T stand for transformer.

.
Image generated with DALL.E: “A small robot standing on the
shoulder of a giant robot” (and slightly modified with The Gimp)



Rapidité de la progression de I'lA gen

Language and image recognition capabilities of Al systems have improved rapidly m

Test scores of the Al relative to human performance

+20 PP
] Al systems perforr_n better than
0~<Human performance, as the benchmark, is set to zero. ! theumanswhio didthese fesis
,’1AI systems perform worse
-20 1
1
]
-40 ’I
1
/
-60 ]
/ .
-80 Handwriting recognition . Language understanding
ape . !
Speech recognition Image recognition I ¢
-100 T T T T T T T T I‘ T
'
‘\ 2000 2005 2010 2015 201 7\ ” 2020
The capability of each Al system is normalized
to an initial performance of -100. /
Data source: Kiela et al. (2021) - Dynabench: Rethinking Benchmarking in NLP
OurWorldinData.org - Research and data to make progress against the world's largest problems. TranSformerS Licensed under CC-BY by the author Max Roser

e Kiela et al. (2021), Dynabench: Rethinking Benchmarking in NLP: arxiv.org/abs/2104.14337
e  Roser (2022), The brief history of artificial intelligence: The world has changed fast — what might be next?: ourworldindata.org/brief-history-of-ai

Text and shapes in blue [l have been added to the original work from Max Roser.



~ Architecture de I'lA gen

Architecture technique d'un Large Language Model (LLM)

Entrainemerft'du modele
(Transformer: (Gradient Descent, Fine-Tuning)



Les transformers

Les Transformers sont des modeéles d'intelligence artificielle basés sur une architecture de deep learning qui utilise des
mécanismes d'attention pour traiter et générer des séquences de données, comme du texte ou des images.

Fonctionnement :

e  Mécanisme d'attention : Permet au modele de se concentrer sur différentes parties de I'entrée pour mieux
comprendre le contexte et les relations entre les éléments.

e  Architecture : Composée de couches empilées de transformateurs, incluant des encodeurs et des décodeurs, qui
permettent de traiter les séquences de maniére paralléle et efficace.



Les transformers

Applications :

e  Traitement du langage naturel (NLP) : Traduction automatique, génération de texte, chatbots.
e  Vision par ordinateur : Reconnaissance d'images, génération d'images.
e  Autres domaines : Bioinformatique, génération de musique, analyse de séries temporelles.



Les transformers

Avantages :

e Efficacité : Capables de traiter de grandes quantités de données en paralléle.
e  Polyvalence : Utilisables dans divers domaines et pour différentes taches.



Architecture Transformers

Encoder

Output probabilities

3

[
[
[
o
"

Multi-head

Attention [
A

([ Softmax ]
Decoder
1 B,
Add & Norm =
I
MLPs ]
Add & Norm |
Multi-head ]
Attention
([ Add&Norm  J=-
1
Masked Multi-head ]
Attention
A
J

\
Positional encodin
([Positonal encoding }—>(H SEeE P D

A

Embeddings ]

Embeddings [

Input sequence

Target sequence




LeLLM

Large Language Models (LLM)

Définition :

e Les LLM sont des modeéles d'intelligence artificielle qui utilisent des réseaux neuronaux profonds pour traiter et
générer du langage naturel. lls sont entrainés sur de vastes ensembles de données textuelles pour comprendre et
produire du texte de maniéere cohérente et contextuelle.



LeLLM

Large Language Models (LLM)

Fonctionnement :

e Entrainement : Formés sur des milliards de mots, les LLM apprennent les schémas et les relations linguistiques.

e Architecture : Utilisent des architectures avancées comme les Transformateurs (Transformers) pour gérer de
grandes quantités de données et de parametres.

e  Génération : Capables de produire du texte, traduire des langues, répondre a des questions, et bien plus encore.



LeLLM

Large Language Models (LLM)

Applications :

e Traitement du langage naturel (NLP) : Chatbots, assistants virtuels, analyse de sentiments.
° Création de contenu : Rédaction d'articles, génération de code, création artistique.

e  Automatisation : Automatisation de tadches complexes, aide a la décision.



LeLLM

Large Language Models (LLM)

Avantages :

e  Polyvalence : Peuvent étre appliqués a une variété de taches linguistiques.
e  Efficacité : Améliorent la productivité et I'efficacité dans divers domaines.

e Ressources : Nécessitent des ressources computationnelles importantes pour I'entrainement et l'inférence.
e Ethique : Risques de biais et de désinformation.



La big Picture des LLM

Google

00 Meta

@OpenAI

00
Bai Y&

PaML (540b), LaMDA
(137b) and others (Bard
relies on LaMDA)

OPT-IML (175b), Galactica
(120b), BlenderBot3
(175b), Llama 2 (70b)

GPT-3 (175b), GPT-3.5 (?b),

GPT-4 (?b)

ERNIE 3.0 Titan (260b)

BigScience BLOOM (176b
BL M ( !

g@ HUAWEI PanGu-a (200b)
@ANVIDIA.  Megatron-Turing NLG (530b)
@ LG AlResearch Exaone (300b)

Al21labs Jurassic-1 (178b), Jurassic-2 (?b)

(It appears that all those models rely only on
transformer-based decoders)



LM
Evoluti @
Gm) Tree
=)
(ELECTRAL )
q "msmn T5}C)
i,r‘@ﬁ &%%«,

LLaMA-2-Chat %\

La big Picture des LLM

u_aMAn
OPTIMLIP.A
ChatcPT|© sloomze] Ncalactica [
Sparon] O
LD [Minena) G,
Palv)G
GPT-NeoX [}

LavMDAIG

' #[0)8) e

E&mo
GPT-Neo(8]

XLNet f]

GPT-2.&)

GPT-1[5]

BOpsn OCksed

Oe30T BOON:Z

[



Limitations of the GEN IA : Hallucinations

Les hallucinations en IA générative se produisent lorsque le modéle géneére des informations incorrectes ou fictives,
présentées de maniére convaincante comme des vérités.

Causes :

° Données d'entrainement insuffisantes : Manque de données pertinentes ou biaisées.

Modeles complexes : Difficulté a interpréter et a vérifier les sorties du modéle.

° Génération probabiliste : Le modéle prédit les mots suivants basés sur des probabilités, ce qui peut entrainer des
erreurs.

Exemples :

° Un chatbot affirmant faussement que le télescope spatial James Webb a capturé des images d'une planéte en
dehors de notre systeme solaire.
° Un assistant virtuel générant des faits historiques incorrects ou des citations inventées.



Limitations of the GEN IA :
Non-déterministe et bias d'entrainement

L'lA générative peut produire des résultats différents méme avec les mémes entrées, ce
qui peut entralner une imprévisibilité dans les résultats.

Les modeles peuvent reproduire et amplifier les biais présents dans les données
d'entrainement, ce qui peut entrainer des résultats discriminatoires ou injustes



Limitations of the GEN IA : Le phénomeéne
de Drift

Le drift en |A se référe a la dégradation progressive des performances d'un modeéle au fil du temps en raison de changements dans
les données ou I'environnement.

Causes :

Evolution des données : Les données d'entrainement deviennent obsolétes ou ne reflétent plus les nouvelles tendances.
Changements dans lI'environnement : Modifications des contextes d'utilisation, des préférences des utilisateurs ou des
normes linguistiques.

e  Biais accumulés : Amplification des biais présents dans les données d'entrainement.

Conséquences :

e  Précision réduite : Diminution de la pertinence et de I'exactitude des prédictions du modele.
e Décisions erronées : Risque accru de prises de décisions basées sur des informations incorrectes.
e  Perte de confiance : Réduction de la confiance des utilisateurs dans les systemes d'lA.



Limitations of the GEN IA : Le phénomeéne
de Drift

Al Progress Report
Between March and June, ChatGPT became less accurate and less responsive to some
questions. In some cases, Chat GPT-3.5 improved while Chat GPT-4 became less accurate.

M ChatGPT-4 M ChatGPT-35
ACCURACY 0 25 50 75 109%

June @— & March

Identifying prime numbers
pRap March @—— @ June

Identifying happy numbers* ®
*—e

Generating functional [ ——
code tosolve math problems g, ®

. . . <4
Answering medical questions ®

RESPONSE RATE

Answering questions like
‘Make a list of ways to make
money while breaking the law’

o——

o0

Answering survey questions
S »

0 25 50 75 100%

*Happy numbers are a sequence of integers studied in number theory.
Source: Lingjiao Chen and James Zou, Stanford University; Matei Zaharia, University of California, Berkeley
Erik Brynildsen/THE WALL STREET JOURNAL



0

ML Ops



Qu’'est-ce que le MLOps ?

MLOps (Machine Learning Operations) désigne un ensemble de pratiques et de processus qui combinent le
Machine Learning (ML) et les principes de DevOps pour automatiser et améliorer la gestion des modeles d’lA
tout au long de leur cycle de vie.

Objectif : rendre les modeles ML scalables, reproductibles, et fiables en production.


https://ml-ops.org/
https://fr.wikipedia.org/wiki/Devops

Pourquoi le MLOps est essentiel ?

Contexte industriel : Les modeéles ML sont souvent créés dans des environnements isolés (ex : notebooks).
Sans un pipeline structuré, il est difficile de passer de la phase de prototypage a la production.

Défis :

e  Gestion des données massives (Big Data).
° Maintenance des modeles en production.
e  Collaboration entre équipes de Data Scientists, Data Engineers, et DevOps.

° Possibilité de réentrainement a chaud en continu



RELEASE
,“'\'HH ,JM‘ f‘ ‘ : g ‘ DEPLUY

MONITOR OPERATE

A




MoDEL
DENELOPMEANT

OPERATIONS

. R ""S . . i i
e%mg\;;zmmnj ﬁc:’:\ :r\\a\me ring *;l;;iod;\ D\eploymevrl-
. e « Cl/cD Yipelines
-ML Use-Coses %ngineertng Apeiine
Prionzation . . Honibdpg &
e Data R\Jai\abﬂ(-k{ “add \;rof\si)fc:ln ;n Triggering

Check



Différence entre le DevOps et le MLOps ?

DevOps MLOps
Gestion du cycle de vie logiciel Gestion du cycle de vie des modeles ML.
CI/CD pour déploiement rapide CI/CD + monitoring des performances des modeles
Versionnage du code Versionnage du code, des données, et des modeles

Logs, monitoring, et gestion des dérives des modéles

Logs et monitoring d’applications (data drift)



- Acteurs principaux

développement et

expérimentation de modéles

gestion des pipelines de
données et mise en place
des infrastructures Big
Data.

intégration des modeles
dans des environnements
scalables et automatisation
des workflows



Contexte big data

e  Volume : Gérer des datasets massifs qui ne tiennent pas en mémoire (ex : logs, clicstreams).
e  Vélocité : Traiter des flux de données en temps réel (Kafka, Spark Streaming).
e  Variété : Manipuler des formats hétérogeénes (images, textes, JSON, Parquet).

e  Variabilité : Garantir que les modeles restent performants malgré des données qui évoluent dans le
temps (concept drift).



Volume

Description

° Les projets Big Data nécessitent de manipuler des datasets bien plus volumineux que ce que peut
gérer un ordinateur individuel.

e Les données peuvent provenir de multiples sources (logs web, capteurs loT, transactions financiéres,
etc.) et s'accumuler rapidement.

Impact sur le MLOps

° Les pipelines doivent étre congus pour traiter des données stockées de maniére distribuée (ex :
Hadoop Distributed File System - HDFS).

e Les étapes d’entrainement des modéles nécessitent un traitement distribué (par ex : Apache Spark
MLLib ou TensorFlow on Kubernetes).



Vélociteé

Description

e Les données sont souvent générées en flux continus et nécessitent une ingestion et un traitement en
temps réel.

° Exemples : flux de clics (web), transactions bancaires, données de capteurs dans des usines ou des
villes connectées.

Impact sur le MLOps

e Les pipelines doivent intégrer des outils de streaming comme Kafka ou Spark Streaming.

° L'évaluation et la mise a jour des modeles doivent étre capables de fonctionner en quasi-temps réel
(low-latency).



Variéte
Description

e Les données peuvent étre structurées (tables SQL), semi-structurées (JSON, XML), ou non structurées
(textes, images, vidéos).

e  Par exemple, un projet de classification d’articles e-commerce peut devoir analyser a la fois des
descriptions textuelles et des images des produits.

Impact sur le MLOps

° Les pipelines doivent étre capables de gérer plusieurs types de données simultanément.

e Les étapes de preprocessing doivent étre adaptées au format de chaque type de données (ex : NLP
pour textes, transformation FFT pour signaux audio).



Variabilite

Description

e Les données évoluent dans le temps, ce qui peut entrainer des problémes de concept drift (le modele
devient obsoléte face a des données qui changent).

° Exemple : un modeéle de recommandation peut devenir moins performant a mesure que les
préférences des utilisateurs changent.

Impact sur le MLOps

e  Nécessité d'implémenter des systémes de monitoring pour détecter les dérives de données.

e  Mise en place d’'un pipeline automatisé pour réentrainer régulierement les modeles.



Exemple d’'applications ML avec Big Data

E-commerce : systémes de recommandation

e Données
o  Historique d’achats, clic streams (flux de navigation), avis des clients, informations sur les

produits.

e Défis
o  Traiter en temps réel des flux d’interactions utilisateurs pour adapter les recommandations
dynamiques.

o  Gérer les datasets massifs (plusieurs millions d’articles et clients).

e  Solution typique
o  Spark MLLlib pour la phase d’entrainement, Kafka pour lingestion des flux, et Redis pour servir

les recommandations en temps réel.



Exemple d’'applications ML avec Big Data

Finance : détection de fraude

e Données

o  Transactions bancaires, logs des connexions utilisateurs, données démographiques.

e Défis
o Identifier des comportements frauduleux dans des millions de transactions en temps réel.
o  Gérer des ensembles de données trées déséquilibrés (trés peu de fraudes par rapport aux

transactions normales)

e  Solution typique
o  Spark Streaming pour analyse en temps réel, entrainement d’'un modéle supervisé avec

MLflow pour gérer les versions.



Exemple d’'applications ML avec Big Data

Santé : modéles prédictifs

e Données
o  Dossiers médicaux électronigues, images médicales, données de capteurs connectés.

e Défis
o Fusionner des données provenant de sources variées tout en respectant les réglementations
sur la confidentialité (ex : GDPR, HIPAA).

o  Traiter des images massives ou des signaux en temps réel.

e  Solution typique
o  Hadoop ou Amazon S3 pour stocker les données massives, TensorFlow pour entrainer des

modéles DL.



Outils couramment utilisés dans un contexte
Big Data

Ingestion des données

e  Apache Kafka
o Plateforme de messagerie distribuée.
o |déal pour lingestion de flux de données en temps réel.

o  Utilisé pour connecter des sources de données hétérogenes a des pipelines ML.

e  Apache NiFi
o Permet de concevoir des pipelines de données flexibles avec des connecteurs préts a lemploi.

o Utile pour orchestrer des flux entre différents systemes (bases de données, services cloud).



Outils couramment utilisés dans un contexte
Big Data

Traitement et stockage

e  Apache Spark :
o Framework pour le traitement distribué.
o Inclut des bibliothéques ML (Spark MLLlib) et des API pour le traitement des données en batch

ou en streaming.

e Hadoop / Hive
o  Hadoop : stockage distribué des données.

o Hive : interface SQL pour interroger des données massives stockées dans HDFS.



Outils couramment utilisés dans un contexte
Big Data

Analyse et monitoring

e  Elasticsearch
o Moteur de recherche distribué rapide.

o  Peut étre utilisé pour indexer et rechercher des logs ou des métadonnées.

e  Prometheus / Grafana
o Prometheus : collecte et gestion des métriques en temps réel.

o  Grafana: visualisation des métriques pour le monitoring des performances.



Liens entre BigData et MLOps

Collecte des données a grande échelle

° Les workflows MLOps doivent commencer par des pipelines robustes pour collecter et stocker les
données massives.

e  Exemple : utiliser Kafka pour lingestion, Spark pour le nettoyage et la transformation, et Hadoop/S3
pour le stockage.



Liens entre BigData et MLOps

Entrainement distribué

° Les frameworks comme TensorFlow et PyTorch doivent s'intégrer avec Spark ou Kubernetes pour
gérer des volumes massifs de données.

e Les modeles peuvent étre entrainés sur des clusters avec GPUs pour accélérer les calculs.



Liens entre BigData et MLOps

Monitoring des pipelines ML

° Environnements Big Data nécessitent un monitoring constant pour détecter des pannes ou des dérives
de données.

e Les outils comme MLflow ou Neptune.ai permettent de suivre les versions des modeles et de
monitorer leurs performances.



En résume

e Les défis du Big Data (volume, vélocité, variété, variabilité) imposent des contraintes spécifiques aux
pipelines MLOps.

° Les outils comme Kafka, Spark, et Hadoop s’integrent dans les pipelines pour gérer les données
massives.

° Les modéles ML doivent étre concus pour évoluer avec les données tout en restant performants.



Phase 1

Phase 2

Phase 3

Phase 4

Exemple d'un workflow ML appliqué au Big

Data

data collection

data ingestion

data storage

model lifecycle

~
Data sources (Logs, sensors, databases, ...)
J
~
Ingestion Layer (Kafka, NiFi)
J

N
Data Storage Data Processing Model Training
(HDFS, S3, BigQuery) (Spark, Dask) (MLFlow, DVC)
J
N
Model Deployment Monitoring
(Kubernetes, Docker) (Prometehus, Grafana)




Bonnes pratiques pour le data scientist

Ecriture de code pour le MLOps

Structuration des projets

° Utilisation de standards pour organiser les projets afin de garantir la clarté, la réutilisabilité et la collaboration.

° Organisation recommandée

data/
raw/
processed/
notebooks/
src/

Donnees brutes

Donnees transformees

Notebooks pour les explorations
Scripts principaux

Scripts de preprocessing
Scripts d’entrainement
Fonctions utilitaires

Scripts de test

Définition de 1’'image Docker
Documentation du projet

data/
models/
utils/

tests/
Dockerfile
README .md

HOoHEHHE R HR




Bonnes pratiques pour le data scientist

Ecriture de code pour le MLOps

Notebooks reproductibles et scripts batch

Les notebooks sont utiles pour la phase d’expérimentation mais doivent étre reproductibles :
Versionner les notebooks avec nbstripout (enlever les outputs avant commit).
Sauvegarder les états intermédiaires (modeles, métriques) pour faciliter la reprise.
Les scripts batch sont essentiels pour les pipelines en production :

Convertir les notebooks validés en scripts modulaires (ex : train_model.py).

Utiliser des outils comme Papermill pour automatiser U'exécution des notebooks.



Bonnes pratiques pour le data scientist

Ecriture de code pour le MLOps

Utilisation d’environnements virtuels

. Créer des environnements isolés pour éviter les conflits de dépendances :
. Poetry: Gere les dépendances et les versions de Python.
. Docker : Fournit des conteneurs légers pour packager les environnements de maniere

standardisée.

Exemple Dockerfile basique

dockerfile

FROM python:3.9
WORKDIR /app

COPY requirements.txt .

RUN pip install -r requirements.txt
COPY .

CMD ["python", "src/main.py"]




Bonnes pratiques pour le data scientist

Versionning

Versionning du code avec Git

e  Suivre les bonnes pratiques Git
° Utiliser une convention de noms pour les branches (main, dev, feature/).
e  Faire des commits fréquents et descriptifs.

° Intégrer des outils de revue de code (ex : GitHub Actions pour la CI/CD).



Bonnes pratiques pour le data scientist

Versionning

Versionning des données et des modéles

e Les données et les modeles évoluent au fil du temps, nécessitant un versionnage.

MLflow

e  Gere le tracking des expériences (hyperparamétres, métriques, modeles).

° Exemple de workflow : python

import mlflow

with mlflow.start_run():
mlflow.log_param("learning_rate", 0.01)
mlflow.log_metric("accuracy", 0.95)
mlflow.log_artifact("model.pkl")

DVC (Data Version Control)

e  Suit les versions des fichiers volumineux (données, modeles).
e Integre des pipelines reproductibles via des fichiers YAML.



Bonnes pratiques pour le data scientist

Testing dans un pipeline IA

Tests unitaires pour le preprocessing

e  Vérifier que les transformations des données fonctionnent correctement :
e Test d'intégrité des données (valeurs manquantes, doublons).
e Test des pipelines (par ex : vérifier que 'encodage de variables catégoriques donne le résultat attendu).



Bonnes pratiques pour le data scientist

Testing dans un pipeline IA

Tests de performance et de qualité des modéles

Définir des tests spécifiques pour évaluer les modéles

Métriques de base : précision, rappel, F1-score, AUC.

Tests de robustesse : vérifier la performance sur des jeux de données bruitées.
Comparaison avec des benchmarks (modéles précédents).



Bonnes pratiques pour le data scientist

Testing dans un pipeline IA

Utilisation de CI/CD pour les pipelines MLOps

e Intégrer les tests dans un pipeline CI/CD pour automatiser les vérifications a chaque modification :

yaml|

e Exemple avec GitHub Actions :
name: CI for ML

on: [push]
jobs:
test:
runs-on: ubuntu-latest
. " n steps:
Ces pratiques peuvent paraitres plus coiiteuses en — uses: actions/checkout@v2

temps... MAIS elles évitent les régressions et les problémes — name: Set up Python

lors de développements futurs 178 EL ORs (eeiUpRRYERONEYE
with:

python-version: 3.9
name: Install dependencies
run: pip install -r requirements.txt
name: Run tests
run: pytest




Bonnes pratiques pour le data scientist

Réentrainement et monitoring

Détection des dérives de données

e  Surveiller les distributions de données pour détecter des changements (concept drift) :
e Exemple : Histogramme des valeurs de features, comparaison avec les distributions historiques.

e  Ouitils : Evidently Al, WhyLabs.



Bonnes pratiques pour le data scientist

Réentrainement et monitoring
Automatisation du réentrainement

° Réentrainement basé sur des triggers (ex : détection de dérives, nouveaux jeux de données) :
o  Airflow ou Kubeflow pour orchestrer les workflows.

° Exemple de DAG avec Airflow :

python

from airflow import DAG
from airflow.operators.python_operator import PythonOperator

def retrain_model():

pass

dag = DAG('retrain_pipeline', schedule_interval='@weekly')
retrain_task = PythonOperator(task_id='retrain', python_callable=retrain_model, dag=dag)




Bonnes pratiques pour le data scientist

Stratégies de déploiement
Différentes approches pour minimiser les risques lors du déploiement de nouveaux modeéles :

e Shadow Deployment : Le nouveau modéle fonctionne en paralléle sans affecter les utilisateurs.
e A/B Testing : Les utilisateurs sont divisés en groupes, chaque groupe utilisant un modeéle différent.

e Canary Release : Déploiement progressif sur une fraction des utilisateurs avant une mise en
production compléte.



03

Retrieval Augmented
Generative Concepts



Qu’'est ce qu'un RAG ?

Définition et principes

Retrieval-Augmented Generation (RAG) est une méthode d’intelligence artificielle combinant deux étapes
principales :

1. Retrieval : Recherche d’informations pertinentes a partir d’'une base de connaissances ou d’une source

externe.
2. Generation : Utilisation d’'un modele génératif pour produire une réponse enrichie a partir des

informations récupérées.

e  Obijectif : améliorer la précision et la pertinence des réponses générées par des modeles tout en
limitant les hallucinations (générations incorrectes ou hors-sujet).

Principe fondamental

e Contrairement a un modele génératif qui s’appuie uniquement sur ses connaissances internes
(apprises durant Uentralnement), un systétme RAG interroge une source de données externe pour
enrichir sa réponse en temps réel.



Différence avec les approches classiques de

NLP

Aspect

Dépendance aux données

Flexibilité

Performance

Exemples d’utilisation

Approche Classique (Generative)

Modele autonome, dépend
uniguement de lUentrainement
initial

Limité aux données vues pendant
Uentrainement

Risque d’hallucinations si les
données ne sont pas dans le
modele

Chatbots classiques, traduction
automatique

RAG

Récupére des données externes a
la demande pour augmenter ses
réponses

Peut s’adapter en temps réel a des
données externes mises a jour

Réponses plus précises grace a
lenrichissement externe

Chatbots augmentés, assistants
juridiques, recherche scientifique



Fonctionnement d’'un systéme RAG

Etape 1 : Recherche d’information (retrieval)

Objectif : Identifier des documents ou informations pertinentes a partir d’'une base de
connaissances.

Approches courantes
o Dense Retrieval :
[ Utilise des vecteurs pour représenter les documents et les requétes.
[ Outils : FAISS (Facebook Al Similarity Search) pour lindexation et la recherche rapide.

o Sparse Retrieval :
[ Basé sur des techniques traditionnelles de recherche (ex : BM25).
n Outils : Elasticsearch, Lucene.

Processus typique

Une requéte utilisateur est transformée en un vecteur ou en une structure compréhensible
pour le systeme.

Le systéme interroge une base de connaissances pour récupérer les informations les plus
pertinentes.

Les informations retournées sont utilisées comme contexte pour la génération.



Architecture d'un RAG

Retrieval Augmented Generation

Embedding Model

Vector embeddings

Retrieval Methods

Vector DB

Vector

Private or Custom Data

Query

www.ashutoshtripathi.com

embeddings

Embedding Model

_[

Retriever

Top N Documents
(similarity or|semantic search)

Retrieved Context

Retrieved Context

Generative Approach

e
Py e

External Data Source

iy

Embedding Model

Trained Model

O R~ S

LLM

Prompt

’ . Formatted Response
Query + Promp (User Interface)

T

Limitations in Generative Approach

Not Updated to the latest information
Updates take Long training time
Hallucinations

Lack in Domain-specific most accurate
information

Source Citations

These limitations are reduced using RAG
methodology

Query + Prompt O
U ——

e ()

Response




Etape 1 - Exemple

python

import faiss
import numpy as np

d = 128

index = faiss.IndexFlatL2(d)

vectors = np.random.random( (1000, d)).astype('float32')
index.add(vectors)

query_vector = np.random.random((1, d)).astype('float32')
D, I = index.search(query_vector, k=5)
print("Indices des documents pertinents :", I)




Fonctionnement d’'un systéme RAG

Etape 2 : Génération de réponses augmentées

e Objectif : Créer une réponse en combinant les informations récupérées et la capacité
de génération du modele

e Fonctionnement

=

Les informations récupérées sont utilisées comme contexte pour le modele génératif.
2.  Un modele (par ex. GPT) est utilisé pour générer une réponse complete en langage
naturel.



Etape 2 : Exemple avec Hugging Face
Transformers

python

from transformers import AutoTokenizer, AutoModelForSeq2SeqlLM

tokenizer = AutoTokenizer.from_pretrained("t5-base")
model = AutoModelForSeq2SeqlLM.from_pretrained("t5-base")

retrieved_context = "Python est un langage de programmation populaire."

input_text = f"Contexte: {retrieved_context} Question: Qu'est-ce que Python?"
inputs = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[@], skip_special_tokens=True))




Intégration dans une chaine MLOps

Collecte et versionning des données de recherche

e Importance: Les bases de connaissances évoluent dans le temps. Les systemes RAG
doivent intégrer des données récentes et versionnées.

e Pratiques recommandées :
o  Stocker les documents dans un systeme versionné (ex : DVC, MLflow Artifacts).
o Indexer les données avec des outils comme FAISS ou Elasticsearch.
o  Automatiser les mises a jour de Uindex avec des workflows (ex : Airflow, Dagster).



Intégration dans une chaine MLOps

Entrainement et fine-tuning des modeéles génératifs

e Les modeles génératifs doivent étre adaptés au domaine spécifique (fine-tuning) :
o Exemple : Fine-tuning d’un modeéle GPT sur des questions-réponses médicales.
o Utilisation d’outils comme Hugging Face Trainer pour gérer le fine-tuning.

e  Pipeline typique

Préparation des données Fine-tuning du modele Evaluation sur un jeu de
d’entrainement : Contexte + génératif validation (précision des
Question — Réponse réponses, cohérence).



Intégration dans une chaine MLOps

Déploiement et monitoring dans un contexte Big Data

e Déploiement
o Les systemes RAG peuvent étre conteneurisés avec Docker et orchestrés via Kubernetes.
o Utilisation d’APIs (FastAPI) pour permettre un accés en temps réel.

e Monitoring
o  Surveillance des performances du retrieval (précision des résultats).
o  IMesure de la qualité des réponses générées (feedback utilisateurs).
o  Outils : Prometheus, Grafana, ou outils spécifiques comme Evidently Al.



En réesume

1. RAG combine retrieval et génération pour fournir des réponses plus précises et
adaptées aux contextes dynamiques.

2. Leretrieval et la génération sont deux étapes complémentaires : une pour chercher,
Uautre pour répondre.

3. Lintégration dans une chaine MLOps nécessite des workflows robustes pour gérer U
évolution des données et la performance des modeles.



04

Retrieval Augmented
Generative Practical



Task 1



