databases, data
engineering & big data

Kafka & event driven architectures

mailto:luc.marchand.pro@proton.me
mailto:maxence.tallon@gmail.com

Global Syllabus

Introduction and main Kafka & event driven
concepts architectures

SQL, set up env and

practical work Spark & Delta

NoSQL world Warehouse, DBT & Bl

Introduction to Big Data

& Data Engineering IA - MLOps & RAG

Course syllabus

What is and why
consider event world ?

Design patterns

Key concepts

Kafka ecosystem

Kafka

Before starting the course

Go to https://aithub.com/Esme-Sudria-Database/lab-kafka

Clone the repository (git clone <https-github-url>

Run make start to launch the stack (and download all the needed images)
Listen to this interesting course during downloading ;-)

https://github.com/Esme-Sudria-Database/lab-kafka

01

What is and why consider
event world ?

So... what isan event ?

o An eventis anything that takes place in the world.

o Aneventisimmutable, ie it can’'t be deleted.

> If you want fo cancel an event, you have to generate another event
> Itis so atrustable information.

o Itis (usually) composed of a header and a body.
> Itis often written as json

Why may you want to use an architecture based on events ?

@ You may want to:
> aggregate different kinds of data sources
decouple elements of your information system
react almost in real-time based on events from your system
migrate data from A to B easily
show a live dashboard

vV V V V V

A situation as an example

Un projet qui débute

Frontend Frontend
Server Server
Application Application
Metrics Metrics

Metrics
Server

Un Capharnaim naissant

Frontend Frontend Database
Server Server Server

Database Chat Shopping Backend
Slave Server Cart Server

=/ ,/

\ 4 v
Metrics Metrics Active Database
Ul Analysis Monitoring Monitor

Une boite au milieu pour nettoyer tout ¢ca

Frontend Frontend
Server Server

Chat Shopping Backend
Server Cart Server

v

Metrics
Pub/Sub

Metrics Metrics Active Database
Ul Analysis Monitoring Monitor

Un bordel naissant de nouveau...

Frontend Frontend Database Database Chat Shopping Backend
Server Server Server Slave Server Cart Server
\ 4 l \ 4

Metrics Logging Tracking
Pub/Sub Pub/Sub Pub/Sub

v v v

v v
Metrics Ul Metrics Active Database Log Security Offline
Analysis Monitoring Monitor Search Analysis Processing

A distributed event bus to run them all

Frontend Frontend Database Database Chat Shopping Backend
Server Server Server Slave Server Cart Server
s 2 i o o —— - —— = —r— = —— o —— = w—

[[
distributed event bus
v v v v v v v
Metrics Ul Metrics Active Database Log Security Offline
Analysis Monitoring Monitor Search Analysis Processing

0

Key concepts

What are the key concepts of a distributed event bus?

o Publish / subscribe pattern
® Queuing vs streaming

o High availability & resilience

Publish / Subscribe pattern

Let’s start with producers...

producerl
W sensor

producer2
m/s sensor

Publish / Subscribe pattern

... which publish into topics...

producer]

W sensor

publish

producer2

m/s sensor

publish

Publish / Subscribe pattern

... and consumers subscribe (or read) from topics

producerl
W sensor

producer2
m/s sensor

consumerl

-
publish -

compute
subscribe smtg

consumer2

<
publish -

dashboard

subscribe

Publish / Subscribe pattern

A more generic view

1

Producer
2

Producer
p

Queving vs Streaming

Quevuing

o) (o] (] (o] o)

o Assoon as aconsumer read a message, this one is deleted from the queue
> Multiple consumers can’t read the same message from the queue

o This patternis useful to decouple components and can handle high throughput

e Unclient commande un produit sur A toutes les 5s

Queving

Example
L 0:00 J

e B vérifie en 20s la solvabilité du client pour la commande

° B vérifie les demandes de Vérification toutes les 5 secondes

Un client commande un produit sur A toutes les 5s
B vérifie en 20s la solvabilité du client pour la commande

B vérifie les demandes de vérification toutes les 5 secondes

e Unclient commande un produit sur A toutes les 5s

Queving

Example
[0:10 }

e B vérifie en 20s la solvabilité du client pour la commande

° B vérifie les demandes de vérification toutes les 5 secondes

e Unclient commande un produit sur A toutes les 5s

Queving

Example

Bl

e B vérifie en 20s la solvabilité du client pour la commande

° B vérifie les demandes de vérification toutes les 5 secondes

e Unclient commande un produit sur A toutes les 5s

Queving

Example

[0:20 }

e B vérifie en 20s la solvabilité du client pour la commande

° B vérifie les demandes de vérification toutes les 5 secondes

e Unclient commande un produit sur A toutes les 5s

Queving

Example
[0:25]
ON 0

e B vérifie en 20s la solvabilité du client pour la commande

° B vérifie les demandes de vérification toutes les 5 secondes

£ e @

e Unclient commande un produit sur A toutes les 5s

Queving

Example
[0:30]
OK . O

e B vérifie en 20s la solvabilité du client pour la commande

° B vérifie les demandes de vérification toutes les 5 secondes

(g

e Unclient commande un produit sur A toutes les 5s

Queving

Example
[0:35 J
() @ ole

e B vérifie en 20s la solvabilité du client pour la commande

° B vérifie les demandes de vérification toutes les 5 secondes

> &

Queving vs Streaming

() (=)
(=) (o) (] [o=] ()
(= (=

Streaming

e Inastreaming architecture, both consumers C1 and C2 will consume all messages in the queue
> Each consumer implements a different application

o This patternis useful when using the same data for different purposes and / or allowing replays

Streaming

Example

[0:00

(») @

Un client commande un produit sur A toutes les 5s
B vérifie en 20s la solvabilité du client pour la commande
C vérifie la disponibilité du stock en 10s

D envoie l'accusé de réception de la commande en 5s

> > >
®©-

Streaming

Example

{ 0:05

() ©

Un client commande un produit sur A toutes les 5s
B vérifie en 20s la solvabilité du client pour la commande
C vérifie la disponibilité du stock en 10s

D envoie I'accusé de réception de la commande en 5s

> e
8Os

e Unclient commande un produit sur A toutes les 5s

Streaming
e B vérifie en 20s la solvabilité du client pour la commande
Example
e C vérifie la disponibilité du stock en 10s
[e D envoiel'accusé de réception de la commande en 5s
0:10]

(») @

O @
A\
A

A

0Hs

o e Unclient commande un produit sur A toutes les 5s
Streaming
e B vérifie en 20s la solvabilité du client pour la commande
Example
e C vérifie la disponibilité du stock en 10s
[e D envoie l'accusé de réception de la commande en 5s
0:15 J

OK. _YoX

A\
A
A

. L ¥

Streaming

Example

{ 0:20

OK .

e Unclient commande un produit sur A toutes les 5s
e B vérifie en 20s la solvabilité du client pour la commande
e C vérifie la disponibilité du stock en 10s

e D envoie l'accusé de réception de la commande en 5s

ON NON _

A\
A
A

D

Streaming

Example

[0:25

() @

e Unclient commande un produit sur A toutes les 5s
e B vérifie en 20s la solvabilité du client pour la commande
e C vérifie la disponibilité du stock en 10s

e D envoiel'accusé de réception de la commande en 5s

CXoX JoX

A\
A
A

Streaming

Example

[0:30

(») @

e Unclient commande un produit sur A toutes les 5s
e B vérifie en 20s la solvabilité du client pour la commande
e C vérifie la disponibilité du stock en 10s

e D envoiel'accusé de réception de la commande en 5s

00000 @

A\

A
A

@O,

Streaming

Example

{ 0:35

OK .

e Unclient commande un produit sur A toutes les 5s
e B vérifie en 20s la solvabilité du client pour la commande
e C vérifie la disponibilité du stock en 10s

e D envoiel'accusé de réception de la commande en 5s

00000 @

&

A

A
A

High-availability & resilience
Who says distributed implicitly says HA & resilience

®©

High-availability & resilience
Who says distributed implicitly says HA & resilience

o What happens to my dataiif :

> A main/ replica node crash or does not respond
there is a network failure
a copy to replica fails

\%

\

High-availability & resilience

Who says distributed implicitly says HA & resilience

0]

@

What happens to my dataif :

>

>
>
>

A main / replica node crash or does not respond
there is a network failure
a copy to replica fails

(o)
.

—>

Consensus Algorithm
(quide / animation)

Resiliency

Replication strateqy

http://thesecretlivesofdata.com/raft/
https://raft.github.io/
https://www.cohesity.com/glossary/data-resilience/
https://medium.com/@roopa.kushtagi/data-replication-strategies-and-their-application-in-distributed-systems-d623c9b5ec04

03

Kafka

What is Kafka ?

© message distributor system

© open-source stream-processing software

e provide a unified, high-throughput, low-latency platform for handling real-time data feeds
e originally developed at LinkedIn, started in 2008

@ open-sourced in 2011 at Apache Foundation

Kafka reach an industrial maturity

o Backed by Confluent

o Usedin big companies (Netflix, Uber, Spotify,
Goldman Sachs, ...) —

o Inspiration for cloud providers

® Now on the cloud with Confluent Cloud

mﬂ@

C10¥10 710 10410

MANUFACTURING BANKS INSURANCE

V)

SEE FULL LIST

10/10 Largest insurance companies

10/10 Largest manufacturing companies

_—
—
S
=

(3>

~

8510
TELECOM

10/10 Largest information technology and services companies

8/10 Largest telecommunications companies
8/10 Largest transportation companies

7/10 Largest retail companies

7/10 Largest banks and finance companies
6/10 Largest energy and utilities organizations

NN _—— — —~

Un cluster kafka concentre les flux de plusieurs applications

éolienne

énergie

éolienne

vent

L@ @

Un consumer traite un flux en continue

éolienne
1

éolienne
2

énergie

-/- vent

Plusieurs consumers peuvent consommer le méme flux en paralléle

calcule le
retard des
trains

position

des
trains

calcule la
prochaine
arrivée

Kafka to scale out

Kafka Cluster
— - Consumer
Producer Lam || /T
— [II1D0
R \| | 0001 c
i aIIm onsumer
0I1Do
Producer — o | e |
—> 1D | oo |
I | am
— OO | ' '
Producer & o \)E oaat E
|
|

B

————————

Producers spread messages over many partitions, on many machines,
where each partition is a litfle queue. Load balanced consumers
(denoted a Consumer Group) share the partitions between them

What about throughput ?

looMb/s

0oMb/s

200Mb/s

Producer

Producer

Producer

Kafka Cluster

(many machines)

va

100Mb/s

— (1110
— 1110
— (111
011
—> I
—> I
11
— 1D

p

Consumer
ooMb/s

Consumer
200Mb/s

' Consumer in group of a

(
1 100Mo/s (aggregate)
|

 Consumer in group of a

————————

Rate limiting applied fo Producers, Consumers and Consurmer Groups

DOJO

Before starting this hands-on

Go to https://aithub.com/Esme-Sudria-Database/lab-kafka

Clone the repository (git clone <https-github-url>

Run make start to launch the stack (and download all the needed images)
Listen to this interesting course during downloading ;-)

https://github.com/Esme-Sudria-Database/lab-kafka

What we will do

1. Create a topic to handle all our messages

2. Open one terminal to simulate a producer

3. Open another terminal to simulate a consumer

1. Create a topic

The usual command is this one :
kafka-topics \
--bootstrap-server broker:9092 \
--topic <TOPIC_NAME> \
--create \
--partitions 3\
--replication-factor 1

Open a terminal and do make create-topic, which we will do the job.

2. Be a producer

The usual command is this one:
kafka-console-producer \
--bootstrap-server broker:9092 \

--topic <TOPIC_NAME>

Open a new terminal and do make produce. Write some text inside the terminal then go to

next slide.

3. Be a consumer

The usual command is this one :

kafka-console-consumer \
--bootstrap-server localhost:9092 \
--topic <TOPIC_NAME>

Or with to get all messages from beginning

kafka-console-consumer \
--bootstrap-server localhost:9092 \
--topic <TOPIC_NAME>

--from-beginning

Open two new terminals and do make consume-from-latest and make consume-from-beginning. To see the
differences

More about...

Instead of using pre-configured make target, you can use make broker to connect to broker
and copy / paste commands to have the same behavior.

Some words about...

Topic retention

o By default, an event is available 7 days on the topic.
> This value can be changed.
> Design the right machine because more days implies more data storage
> Specially with Confluent Cloud #FinOps

o It allows to have different speed processing (Ix/day or 1x/5days per example)

Kafka architecture

consumer group gl

kafka cluster

broker-1 :
push 1

messages

—— s
broker-3
‘: pull
B * messages

consumer group g2

=

update

04

Design patterns

Change data capture (CDC)

Emettre seulement les modifications apportées aux données

® You want to take actions based on changes into your database

CDC is an approach to data integration that is based on the identification, capture and delivery of the
changes made to enterprise data sources.

It allows you to stream all the new changes from your data source (like a postgresql database) and
operates calculus, aggregations, ... on those data.

((

L_ CDC II stream processing

pipelines

e Kafka Cluster W
| J .

RDMBS NoSQL

Complex Event Processing (CEP)

©

You want to identify meaningful events (opportunities / threats / ...) in real-time situations and
respond to them as quickly as possible.

/

Event sources

~

a4

-

system devices

N

J

P

sensors

~

>

business
devices

J

Kafka (as Event Store)

4

Event processing

alerts
notifications

persistent
storage

. business rules

' processes

G 4

~ elasticsearch

dashboard

Event Store

©

Stockage temporaire des billets du TGV n°8957 a destination de Nancy le 12 décembre 2022

/

_

~

Billets pour le tgv

8957

/

Fcfko

chargés a J-15

L billets-tgv-8957-20221212-topic

p

extraits avant
le départ du
train

\

Terminal du
contréleur

~

/

Online Prediction

Kafka Connect sl

Go/.NET/Python -

Kafka Producer

Kafka Streams i

—e E
Feature Feature
Data Input Data Input
-

&3 kafka
- -
Model Params
Production Output Sk Training Data M.Od'el
ML App Building

-

<+

Rest Proxy

Schema
Registry

0]

Kafka Ecosystem

Kafka ecosystem

D :
@™ | ‘ ¢
s .

. : Target
Database
Source >
Database

Kafka ecosystem

Source

Database

N
usually to import /
export data into the
cluster

Target

Database

Kafka ecosystem

Target

| Database

7/
o —— —

Source

Database

o R —

there are lots of
connectors available

Kafka Connect

Interact easily with your existing system and the outside world

o Kafka Connectis a tool for scalability and reliably streaming data between Kafka and other systems.
> It makes it simple to quickly define connectors that move large collections of data into and out of Kafka
> |t caningest entire databases or collect metrics from application servers into Kafka topics, making the data
available for stream processing with low latency

© There are connectors available for major data storage tool (like MySQL, ElasticSearch, aws / gcp, ...)
> Theses connectors are maintained in part by the community
> The other part is provided by Confluent, the major Kafka contributor

Kafka ecosystem

for data
= = = processing — — =

———
——— -

D ‘
S - ‘ ' ®
— .

. . Target
Database
Source >
Database

Kafka Stream / ksqlDB

How to read, process and write your data

o© There are two ways to perform transformations / computations on messages inside a kafka cluster:
> ksqlDB, a SQL-like query language to easily operate on streams
> Kafka Stream, a code library to write specific programs; usually when external systems are needed

© These tools allow you to
> consume message from topics

> perform any operations on data when a message is available on topics
+ joins and aggregations are possible too
+ windowing can be needed for joins

> produce output back into kafka topic

Kafka Stream / ksqlDB

A meaningful picture

ease of use

A

ksqlDB CREATE STREAM, CREATE TABLE,

powers Q
KStream, KTable,
Kafka Streams filter(), map(), flatMap(),
join(), aggregate(), ..

powers

Consumer,
Producer

subscribe(), poll(), send(),

v
flexibility

SELECT, JOIN, GROUP BY, SUM, ..

flush(), beginTransaction(), ..

DOJO

Focus on the lab architecture

3

. @

= 0

*

bash scripts

. [producer

vincennesStation

- (producer

nationStation

= e producer

GDLStation

(producer

bastilleStation

* (" producer

chateletStation

o
.
*

J_cpeasps o

vincennesStation

nationStation

3 . "
. * M
.
= -

GDLStation

bastilleStation

‘e

chateletStation

=

& -

.
.
*
)
.
=

SELECT *

FROM nationStation
WHERE
train_state='ARRIVED

EMIT CHANGES;

Environment

Once you have launch the stack (to know when it's fully loaded, wait until the logs speed is
slow), you can see what’s happening on the environment.

Two interfaces :

e Kafka Ul : localhost:8080

e Console to query kafka with ksqgldb : localhost: 7681
o Once in this interface, write ksql http://ksqldb-server:8088 on the console and you’ll be ready

to write some requests

http://localhost:8080
http://localhost:7681

THE END

