databases, data
engineering & big data

Introduction to Big Data & Data Engineering

mailto:luc.marchand.pro@proton.me
mailto:maxence.tallon@gmail.com

About me

Data Engineer at TotalEnergies Digital Factory
maxencetallon@gmail.com

2 years at Octo Technology
1 years until now a Total Energies
2th year as a teacher at ESME

Main topics of interests
o Spark & Databricks
o data engineering & Ml ops
o Best practices / Software craftsmanship

If you have any question, feel free to drop me a mail at any time

Global Syllabus

Introduction and main Kafka & event driven
concepts architectures

SQL, set up env and

practical work Spark & Delta

NoSQL world Warehouse, DBT & Bl

Introduction to Big Data &

Data Engineering IA - MLOps & RAG

Course syllabus

What is Big Data ? Big data architectures
What is a data engineer Columns -Oriented
? Storage

Hadoop ,Map Reduce &
Spark

Transformations &
orchestration

01

What is Big Data ?

A data-centric definition (Gartner’s definition)

Big Data is characterized by the 3 V’s Volume,
Variety, Velocity

Before, working on complete data was impractical and analyses were
made on samples. Today's technology often frees us from this constraint

More and more data sources (and data formats) are at hand: social
networks, web sites, machine-generated logs, mobile location data, ...

Analysis must be made on demand, in a timely fashion. Quick reaction is
crucial because the value of data decreases quickly from the time it is
produced

A general definition

Big Data is the ambition of drawing an
economical benefit from the
quantitative analysis of data,

whether it be internal or external fo an organization.

Other definitions can be found on this website : https://www.opentracker.net/article/definitions-big-data

https://www.opentracker.net/article/definitions-big-data

What do you mean by quantitative analysis?

* Prediction
¢ Correlation

“Predict the future”

* |dentification
* Classification

 Simulation “Consider new
« Optimization situations”

Choisir une famille technologique a partir du modéle en diamant de limitations
des DBMS classiques

Storage

Distributed
storage

“Classical”
domain: Bt
2 xtreme
Streaming Event stream relational Pranaacti Transaction

processing DBMS,
app server,
ETISRe:

Processing

Parallel
programming

zone de performance

zone d'usage / de commodité Computation

Le Big data par le prisme de I'écosysteme

Le Big Data rassemble sous une méme banniére un large écosystéme technologique

MACHINE LEARNING, ARTIFICIAL INTELLIGENCE, AND DATA (MAD) LANDSCAPE 2021

INFRASTRUCTURE ANALYTICS MACHINE LEARNING & ARTIFICIAL 13 APPLICATIONS - ENTERPRISE
sToRaGE HADOOP DAIALAKES ——] DAIA STREAMING ML PLATFORMS saes MARKETING - MARKETING - 82C £/ SERVICE HUMAN CAPTTAL
n EMORY . 028
M T clouomna Qo= | @databricks | WAHOUSE oty e NOTEBOOKS ERRET o - P S - WDy @ciamanmoce | ok e
: [] ‘ﬂ' S W=7 @ binder I Aviwia = oA pendesk @i
o o= - e s O LY YR pe— poasp |- - — g -
i o= &= | = sl P . o
-~ ¥ N P v & wanscuss T P wta | D Asare Qe et F ot
il ol L b a5 S >t 9 e g | @ o) oywo cansta oan cod
cow ek B s woca —
s @ “Pachyderm ocm. §iguozo strodigie iy
Nomn vasy Goiim vt . —; Lo ol — PO [7 yotrazi moengege | ¥ s
- Suge v 3 D i Botdete datmo § s
s LEGAL, ————— REGTECHA — SECuRITY
ROBMS — NoSOL DATABASES REALTIME — GRAPH DB FEATURE STORE 3 MODEL ——{ | RAvEL eworsco | COMPUANCE Govem Porion G Beusns N Wiwi
DATABASES BLABELUNG MENTAPRO- | MONTORING | | Commamer Obis | Woe
s | = Osowistar | W04 Ammtmnm | | gt rcroicn Dpestoho alteryx | T W 0N Peme e =]] % . p et peedis Besaaes @i
acy m [— b RO ANOMALL et P %
- = ° © "oy IBM L ok sapoey | *3l Pee wum~ | O Cooge F = -
® e ORAGLE Omonge P Mrcoe Datameesr ot ier., anod®t -oullier aotcbncks 5
. . RN PSR P o o sl 2 S 4 i S B
° arklogs (O Coutbne W vers N awim | B asng oo Qfn amvo | purived ns | @ [T Xoer G
s & o Al e | @ reasr NS * sum - - Avenene Beootes femn
~ e seviea . —t gam | [guavus T T P i ——
L]
- PUNPR e B @ e 3 wiitboud obieusty.sl Aae | cittof A APPLICATIONS - INDUSTRY
WPPOBs — EIL/E REVERSE £1L —) DATA INTEGRATION OATAGOVERWANCE —| | DATA CATALOG METRICS ne REALESTATE GOVT& COMMERCE
'DATA TRANSFORMATION BACCESS AND DISCOVERY STORE. o - INTELLIGENCE sTiTow
Teanon Census | = i e splunk - <’ [L] Reorm
Wbt walend alteryx b metaphor [X, » ovre QP @uwnaer | SHEIN v a1 ny
VETION | e Botnh asriion | | Bt Presm veploge atlan 'r o @smong @ 2 G A, gt cosmr o | Tt sTANGARO
. " . race 2 -
e | Do Qe - | e Y — - = B PRIMER =
O Pveie M, o supergrain | e oAl Do s g
Geton o stemana Super Do Y e n FINANCE - INVESTING
e jcodna Boeosopience S
e argapy ZALONI lmpevtle wisascrstan | o transform ® @ somarax [Ty P albert aum rewn | AVASDI keEnsMC | ol cme
eosol | twies @i wmmy | A [oo e @t e essor | TQL s e [l | | Br==e. P - -
DATA OBSERVABILITY MGMT/ MONTTORING SERVER.) CLUSTERSVCS QUERY — SEARCH HEALTHCARE AGRICUTURE 1 INDUSTRIAL omier |
SECURITY 1SS NGINE o
O i S O i O [l 1M . Kin- tica Wik S0, (G =1
saivatins: | Sm @eme G P s | | U o 2 - @ Poween G Dt @t e
» 2 " @D . @algolia coveo o Voyager . —— S0 P
e S = A y— p—
sobrwnas¥ Pmmmm oonbo = B 2 : - o e il e G G
B v | pamaouaTy POribl Ovmpen Govemosron | @ - oy | 12 tuciiworks @ swiftype ATTIV/O Yo rovsia vk Dotoar Ao € Ph co——
S | ratens 5 i 3 5 i Ve Quwer /..
soflow ead 000 00 | Qe ey B | e | L e | Bexacno i sphmeme omniius O S— e P R B M et Ko S
fomckeg S VOSAM o o o
s e o e | o s | [vavaoa | maana Sromonwr cunossercn L R S T [£ R T
OPEN SOURCE
QUERY DATA FLOW DATA — DATABASES STREAMING & STATTOOLS & MLOPS & INFRA —— Al/ MACHINE LEARNING DEEP LEARNING LOGGING & MONITORING —) VISUALZATION COLLABORATION 1 SECURITY ———]
o § R[N & @ Ve s pe-giponi :‘“‘“‘ = . e v | P G Wt §y 0y B 0@ W BT i Catfe [& o | S g | B o A i
o - Tt W fse e WD e e X
R e h S P oy W, 5 | SR——
Qo | 10000 G Gh @—— @ ok — @ me C - e . O P
S @ =W | G = - ot Qpinct e bt cnnan Groan | T @ - e [r— s A0y ot M G-eem boken » Yo
DATA SOURCES & APIs DATA RESOURCES
DATA MARKETPLACES FINANCIAL & ECONOMIC DATA AR/ SPACE / SEA PEOPLE/ ENTITES oTHER INCUBATORS & SCHOOLS RESEARCH
& DISCOVERY . - G arc researc
L esgoni] g B | . i i e S o @OpeAT GosgleResaarch focebook research
» 8 & 7 i e
» omon 4 T — e B e [« IR L. O}
L » e
Ko o o i cOnolabe QI8 A Sy " AntHropc Sk ETU

https://mattturck.com/data2021/

https://mattturck.com/data2021/

Transporter et stocker des données a un
niveau jamais atteint

’ Infrastructure

> IA et Analytic

’ Application & Entreprise

L'infrastructure est la couche primaire d'un environnement big data. Elle
fournit des solutions technologiques pour transporter et stocker des volumes
de données qui dépassent les capacités d'une machine unique.

Chaque minute, Netflix diffuse environ 220 000 heures de vidéo a ses

abonnés.

OBJECT
STORAGE

NoSQL
DATABASE

DATA
GOUVERNAN
CE

DATA
WAREHOUSE

MPP
DATABASE

ETL / DATA
TRANSFORMAT
ION

STREAMING BATCH
PROCESSING

DATA

INTEGRATION

Al HARDWARE

Des technologies que vous avez / aller
aborder dans ce cours

> Infrastructure Data Streaming/Event Object storage Batch processing
Warehouse
} IA et Analytic dbt
data lake
No Sql

> Application & Entreprise .

mongoDB

Transformer des données jusque I3
inexploitables en connaissances activables

> Infrastructure

> IA et Analytic

> Application & Entreprise

L'lA et l'analytique est la seconde couche d'un environnement big data.Le volume de
donnée produit dépasse notre capacité a le stocker pour différer notre traitement.

L'usage de la vidéo ou le speech to text ouvre la voie a des usages en dehors du canvas
classique de UIT (au travers d'un écran) grace aux approches de computer vision, NLP et
depuis 2022 de l'essor des LLM.

Bl PLATFORM DATA DATASCIENCE DATASCIENCE
VISUALISATION NOTEBOOK PLATFORM

COMPUTER NLP SEARCH

VISION RAG

WEB / MOBILE CLICK STREAM
ANALYTIC

Transformer des données jusque I3
inexploitables en connaissances activables

Bl PLATFORM DATA DATASCIENCE DATASCIENCE
VISUALISATION NOTEBOOK PLATFORM
sl
> Infrastructure i Metabase m plotly Jupyter £ & 8 L. J\Z
N Spark
COMPUTER NLP SEARCH
VISION
> IA et Analytic a RAG
-

P elasticsearch Lan g Ch a'in

WEB / MOBILE CLICK STREAM
ANALYTIC

> Application & Entreprise

Outiller des métiers historiques et faire émerger de

nouveaux usages

> Infrastructure

> IA et Analytic

> Application & Entreprise

Les applications et I'entreprise sont la 3&me couche d'un écosysteme big
data pour aider les entreprises a valoriser la donnée sur un segment / une
verticale ciblée.

Des industries classiques comme la sécurité / la défense voient leur
modeéle bousculé par des solutions bout en bout qui intégrent les 2
couches précédentes pour changer un métier comme I'analyse de
photographie satellite ou la reconnaissance de comportement sur des
cameéras de surveillance.

Concepts clés pour la couche d'application & entreprise

MARKETING FINANCE CUSTOMER LEGAL
EXPERIENCE

DEFENSE / COMPLIANCE TRANSPORTATI

SECURITY ON

(o] DIGITAL TWIN

Récapitulatif des différentes architectures

Data Warehouse / Data Lake \ / Data Lake House \ K Data Mesh \

29 e -0
([Y .
LN o0
BI Reports BI Reports Data Machine BI Reports Data Machine Bl Reports Data Machine
I Science Learning Science Learning Science Learning
__ -
ot —
=]]
-— -—
Data Warehouse Data Warehouse

T

m.
ml
m

Metadata and
Governance Layer

Metadata and
Governance Layer

Data Lake

Data Lake

Data Lake
o —
—] —] -
—B——

EE > B E A » o B >) B

Structured, Semi-Structured, Structured, Semi-Structured, Structured, Semi-Structured,
) \ Unstructured Data / K Unstructured Data / K Unstructured Data j

Structured Data

Data Governance & Data Catalogue

Data governance in a data lake ensures the quality, security, and compliance of data by establishing policies and
processes that unify and manage diverse data sources, enabling effective integration and analysis.

A data catalog in a data lake serves as a comprehensive inventory that organizes and provides metadata for
all data assets, facilitating easy discovery, governance, and efficient data utilization.

-
&) ACCOUNT

@ ACCTKEY
@ AUTO_LOAN_BALANCE
Snow xx54260.eu-central-1
f AUTO_LOAN_CLOSED_DATE
+
o) [AUTO_LOAN_DEFAULT
DEMO_DB
BURST_BANK
Customer , ACCOUNT
CREDIT_CARD_PAYMENT
- o
Tl INVOICED_CUSTOMER &) CREDIT_CARD_PAYMENT
CUSTOMER365 2 BALANCE

[CC_NUMBER

[PAYMENT_AMOUNT

0

1

Big data
architectures

An overview of the Big Data technological
landscape

Beyond 10 TB of online
storage, classical Beyond 1,000
architectures cannot cope at Distributed transactions/sec, classical

a reasonable cost storage architectures cannot cope at
a reasonable cost

“Classical”
domain: Eitome
Streaming Event stream relational L Transaction
processing DBMS, Processing
app server,
B0

Beyond 1,000 events/sec, Parallel

classical architectures progresmn g Beyond 10 threads per CPU

cannot cope at a reasonable core, sequential

cost programming reaches a limit
on /O

Computation

An overview of the Big Data technological
landscape

NoSQL and Extreme Transaction Processing

(see the course on NoSQL for details) T,E’,‘.‘;:Qii,n

Processing

As a quick reminder, NoSQL is a new database architecture that permits
> Higher storage capabilities
> Quicker transactions
> More flexible data models

... but at the cost of the ACID properties

The performance is measured by 2 figures: throughput and latency
> Throughput is the number of transactions (fine-grained read or write operations) that can be requested in a
given time. It is measured in tps (transactions per second)
> Latency is the delay between a request and its achievement. It is measured in milliseconds
> The two are not independent: usually latency increases with throughput, when requests come too fast

A

v

Parallel programming

programming

Humans tend to write sequential programs that mimic reasoning
> Do this... then with the result do that... then loop over this and do...

Today's processors have several cores that can run processes or threads concurrently; in some
situations it is desirable to leverage this parallelism to reduce the time taken by a task

Not all tasks can be made parallel, but for those that can, frameworks can help dealing with the hard
problems brought in by concurrent programming, abstracting the physical architecture of the

processor

> Locks

> Synchronization of memory accesses
> Race conditions
>

An extreme example is given by GPUs: thousands of high-performance processors capable of

executing millions of mathematical operations per second
> Video games are very demanding; why not exploit this power for other purposes?

Distributed storage

Distributed
storage

When the data to store or to process is too big to fit on a server, there
is no choice but to distribute it across several servers

Contrary to Extreme Transaction Processing (NoSQL), in the storage-bound class of problems we
don’t want to perform fine-grained transactions. Rather, we want to analyze it in its globality (for

example, to compute exhaustive statistics)
> The problem comes from the amount of data that has to be read off the disk and/or transferred across the
network for computation

This requires different classes of algorithms, like MapReduce, which is covered with Hadoop in the next

section of this course
> There are other algorithms and architectures

Throughput is not a concern here, because we don’t need to submit thousands of operations per
second. But latency, the time taken to compute the result, can be problematic if queries are submitted
by a user waiting for an answer

Event Stream Processing

An event is something that happens outside of the Big Data system Event stream
Processing

Still, we may want to capture it and process it as an information.
In this case, the system observes infinite streams of events, and processing is triggered by the

incoming of new events
> This patternis called publish/subscribe (in this case, our system is the subscriber)

Depending on the complexity of processing, several algorithms and techniques are available
> Complex Event Processing (CEP) performs elaborate operations and calculations on events. For example:
moving average, joining 2 streams, detecting the absence of an otherwise expected event after a timeout,
raising an alert, ...
> Actors are simple processing units that exchange messages in a reactive fashion. The complexity does not come
from the rules but from the way the agents are organized

The key figures here are, again, throughput and latency. If the latency is too high, new messages can't
be buffered and will have to be dropped (sometimes this is acceptable, sometimes not)

ESP and CEP are often used in high-frequency trading, and in smart grids

03

What is a data engineer ?

Multiple definitions

Technical definition

A data engineer is an IT professional responsible for :
- designing,
- building,

managing the infrastructure and systems that support data storage, processing, and
analysis.

They create architectures for data generation, work on ETL (Extract, Transform, Load)
processes, and ensure that data pipelines are efficient, reliable, and secure.

Data engineers handle large volumes of data, often preparing it for data scientists and
analysts.

Business-Focused Definition

In a business context, a data engineer ensures that the organization has access to clean,
consistent, and usable data for decision-making.

They manage the backend data operations and build tools to enable data-driven insights,
helping the company transform raw data into valuable information that drives strategic
planning and operational efficiency.

Developer’s Perspective

For developers, a data engineer is a specialist who bridges the gap between raw data and
data-driven applications.

They optimize databases, maintain data warehouses, and develop APIs and data models,
allowing developers to create scalable, data-centric applications.

They focus on data structure, storage optimization, and system reliability.

From an Analytics/Scientific View

Data engineers are essential to the data science workflow, as they prepare and preprocess

data for analysis.

They create and maintain data pipelines that allow data scientists to focus on building
models and deriving insights without worrying about data quality or accessibility.

They work closely with data scientists to ensure that data sources are reliable, up-to-date,

and accurate.

Globally

A data engineer

- designs,
- builds,
- manages the infrastructure and systems that enable efficient data storage, processing,

and access, ensuring that data is reliable, organized, and available for analysis and
decision-making.

04

Transformations &
Orchestration

What's a ETL ? or ELT

Extract Transform Load or Extract Load Transform:
Extract: Data is gathered from various sources.
Transform: The data is cleaned and converted into a suitable format for analysis.

Load: The transformed data is then loaded into a target system

Basic ETL

import pandas as pd
from sqglalchemy import create_engine

Step 1: Extract
data = pd.read_csv(‘input_data.csv')

Step 2: Transform

Example transformation: Remove rows with missing values and filter for a specific
condition

cleaned_data = data.dropna()

filtered_data = cleaned_data[cleaned_data['column_name']l > 10] # Adjust condition
as needed

Step 3: Load
Create a database connection (replace with your database URL)
engine = create_engine('sqlite:///my_database.db') # Example using SQLite

Write the DataFrame to a SQL table
filtered_data.to_sql('my_table', con=engine, if _exists="replace’, index=False)

print("ETL process completed successfully and data loaded into the database!")

How do you Run our ELT in the Cloud ?

The world of the function
Function as a Service (FaaS): is a cloud computing model that allows developers to run code in response to
events without managing servers, enabling scalable and cost-effective application development.

Event-Driven Execution , Cost Efficiency ,Scalability

Google
Cloud
Functions

Azure Functions

FaaS nightmares

—Autopromotion Reques

Azure Pipelines

—Autopromotion Reques

Azure service bus with session
enabled

Session id =
destinationRepo_branchName

Durable Function

Client Function

=
—Autopromotion Request—» [S—

ServiceABud Queue

—Autopromotion Reques!

i

——Autopromotion Request———

-,/.7;_.

Service Bus Trigger
+

Timer trigger

Durable
entities to
store
version
map

N SZEN\
N

Activity
Function

/

Orchestrator
Function

}'/ &

Service Bus Queue Service Bus Trigger

| A
[]

Durable Function

Orchestrator
Function

> 28

Activity
Function

Pipeline orchestration

Apache Airflow's orchestration enables the automated scheduling, execution, and
monitoring of complex workflows through a user-defined Directed Acyclic Graph
(DAG) structure.

Data Layers

A data layer is a structured framework that collects and organizes data from various sources within a system, such
as a website or application. It acts as an intermediary, ensuring that data is consistently captured and made

accessible for analytics and other tools, facilitating better data management and integration across different
platforms.

Ingest Transform

~r—~ &

N e e e : !
Data Lake Data Lake Data Lake
Storage Storage

Storage
Azure Data Factory

Raw Layer Ingestion Presentati

Layer on Layer
[—
m ——
Power BI ‘ I

I— Visualize

Orchestrate

0]

Stockage colonnes

Column-oriented storage

Column-oriented storage is a data management technique that organizes and stores data by columns rather than
rows. This approach enhances query performance and data compression, making it particularly effective for
analytical workloads and big data applications, where accessing specific columns quickly is crucial.

“%

'/ Index columnstore

Parquet

Column-oriented storage

Logical table Row Layout
representation

al [bl |cl|a2|b2|c2|a3 b3 |c3|ad|bd|cd4d|aS|b5]|cS

a|b|c

al | b1 | cil

a2 | b2 | c2 Column Layout

83103 &8 al |a2| a3|ad|aS bl |b2|b3|b4d|b5|cl|c2|c3|cd4]|c5
ad | b4 | c4

a5 | b5 | c5 ' . ' encoding

encoded chunk encoded chunk encoded chunk

Column-oriented storage

Column-oriented

Row-oriented storage

storage
Pros - Optimized for - Efficient for
Analytics Transactions
- Efficient Compression - Simplicity
- Scalability
Cons - Slower for Transactions - Less Efficient for

Complex Schema
Design

Analytics
- Limited Compression

0]

Hadoop , MapReduce &
Spark

What is Hadoop ?

Hadoop is a collection of open source projects providing a distributed and scalable framework for
Big Data storage and processing
> Hadoop is mostly written in Java

The project began in 2006 and has been managed by the Apache Foundation since 2009

It was the most popular Big Data solution on the market, with hundreds of users around the world
> The most prominent users were also big contributors: Yahoo!, Facebook, Ebay

It is the basis of a thriving software ecosystem

Hadoop core

\ Third-party tools

The Hadoop ecosystem

Storage
[list_rib_ute_d FS

{ llon™ S xa scCie

'\ GlusterFs Isi 0“53 N \\ oz I)c

MapRFS, 1

\ RHadoop

- Ecosys.
NoSQL _ Python
7= ZIN
~
/ / \
| CEPH S~ CFS SAS

\ Ring DynamoDB ,

X Openstack Swnft - cess Glap HAMA &T
o e g e (o] I Y ransf,
\Q‘ " / o*® 2
Batch _

(ogoft/ EXpo , pUTINY

Transactiol

-

’ Storm \
Streamin / ——
Spark

Batch ,\
\
(L Anslytial ’ Hawq /
nalytical 4
b “EIL’ - Seaer lnteractwémpa'a

Elasticsearch
Cloudera Mgr

O"Ster ad“.“e

What can one do with Hadoop

Pretty much anything ;-) Here are some typical use cases

Retail

Basket analysis

Campaign management
Customer fidelity management
Supply-chain management
Behavioral marketing
Segmentation

Telecommunications Indusiry and services

CDR storage and analysis Infrastructure monitoring
Chumn prevention Smart grids, smart cities
Behavioral marketing Brand management
Network performance & optimization Product usage management
Campaign management

HDFS - the Hadoop Distributed File System

HDFS is a distributed file system running on a cluster of servers
> That means that a file called /data/logs/weblogs-2013-01.txt could be scattered on dozens of servers, each
holding a piece of the file

It is scalable (when more storage space is needed, just add servers) and resilient (if a server crashes,

the cluster keeps working and no data is lost thanks to replication)
> Interms of CAP theorem, it is Available and Partition tolerant

HDFS is made for scanning through big data files, it is not meant to host small files like personal
documents or programs

An HDFS cluster is made of 2 types of servers
> Several data nodes that host the contents of the file
> A name node that knows which data node has each part of each file

An HDFS Cluster

(Namenode | [Data node |

"

ffile1

ffile2

MapReduce for distributed data processing

© MapReduceis

> Analgorithm for running in parallel programs that analyze data
> Aframework for developing such programs

o Its works by subdividing the data to process in smaller chunks called splits. Splits are processed in parallel
during the Map phase. At the end the Reduce phase combines the results of the independants maps

Input data / splits

-

The programmer Map Map Map Map Map Map
writes a pair of Mo PP e e, — s
programs: a

mapper and a
reducer. Hadoop

takes care of the Reduce

rest
B

MapReduce - The Map phase

In Big Data scenarios, reading data from disk and transfering splits back and forth between serversis
costly

It is much faster to bring small programs (binaries, scripts, ...) close to the data; this principle is called
data locality

> Q: When the data resides on HDFS, how does MapReduce know where each split belongs?

Split s

Split .
<
O
E Program
[} (1 MB)
7

Q
O

Split S

MapReduce (cont’d) - The Reduce phase

o Allmappers have worked independently of each other, producing many fragments of result data
@ The Reduce phase consists in gathering all those fragments together, and producing the final results

o Example: counting words in a set of documents

\
. » 1,318,394 words
Count
' » 2,192,034 words
Count
‘ 6,240,765 words
' » 1,717,923 words
Count

. » 1,012,414 words
Count -’

MapReduce (cont’d) - Jobs

A Map and Reduce sequence that executes on a cluster is called a job
There is a special service on the cluster, called the job tracker, that waits for job submissions

On each data node, there is a task tracker that awaits orders from the job tracker. Such orders
include launching a mapper, launching a reducer, or reporting on job execution progress

Jobs are submitted directly by a user, or by other tools that hide the complexity of MapReduce
> Example: Hive is a SQL frontend to MapReduce. Hive translates SQL to MapReduce code

select *
from MYTABLE - » Execution
where ...

A full example
Counting the number of occurrences of words in documents

This is MapReduce’s “Hello World” example

What we want to achieve (only with many big files as input):

Input data

Too weary to go further they sought for a0 e o T
some place where they could rest. For and: 1 go: 1 slag: 1 too: 1

a while they sat without speaking under but: 1 it: 1 some: 1 under: 1
the shadow of a mound of slag; but catching: 1 leaked: 1 sought: 1 weary: |
foul fumes leaked out of it, catching choking: 1 mound: 1 speaking: I where: |

: . could: 1 of: 3 their: 1 while: 1
their throats and choking them. =0 N il Worte

foul: 1 place: 1 they: 3
fumes: 1 rest: 1 throats: 1

We need to write a mapper and a reducer programs, and submit them as a job

(0]

A full example - the Mapper

Remember, each mapper will receive a portion of the input data (a split), and will work
independently of the others

MAPPER ALGORITHM

Split input_fragment into words, ignoring case and punctuation
For each word in input_fragment

Set N to the number of occurrences of word in the fragment
Emit a pair (word, N)

Split

S

(too, 1) (weary, 1) (to, 1) (go. 1) (further, 1) (they,
1) (sought, 1) (for, 1) (some, 1) (place, 1) (where
1)

Split

-t

(they, 2) (could, 1) (rest, 1) (for, 1) (a, 1) (sat, 1)
(without, 1) (speaking, 1)

Split

_»

(under, 1) (the, 1) (shadow, 1) (of, 2) (a, 1)
(mound, 1) (slag, 1) (but, 1) (foul, 1) (fumes, 1)

Split

(leaked, 1) (out, 1) (of, 1) (it, 1) (catching, 1) (their,
1) (throats, 1) (and, 1) (choking, 1) (them, 1)

A full example - the Shuffle & Sort

The shuffle & sort is part of the MapReduce algorithm, and is performed behind the scenes by Hadoop. The programmer
doesn’t have to write a program for it

The purpose of this step is to group together the (word, N) pairs emitted by the mappers, so the reducer have all information
belonging to a given word in one place. There is no computation involved in this step
As a nice by-product, the resulting data is sorted on the keys (here, on words)

[foo, T) [weary, 1) [fo, T [go, 1) [further, 1] [They,
1) (sought, 1) (for, 1) (some, 1) (place, 1) (where,
1)

go O
(they, 2) (could, 1) (rest, 1) (for, 1) (a, 1) (sat, 1) el E@
(without, 1) (speaking, 1) reenee

- -e(-E)éj
(under, 1) (th 3 odow,%@-ﬂ-)—feﬁ’,‘
(moun (slag, 1) (but, 1) (f&TI, 1) (fumes, 1)
, 1) (out, l.‘”‘uy, T {iherr,
roats, 1) (and;~1T (choking, 1) (them, 1)

rest [f

A full example - the Reducer

Now the reducer, with the product of shuffle & sort, has all the information needed to count the

occurrences of each word

REDUCER ALGORITHM

For each input pair (word, list of occurrences)
Set S to the sum of the values in list
Emit a string “word: S"

goOl
ital
leaked 0 1
mound [J]
of02 1
outd1
place 01
rest 01

go: 1

Tl

leaked: 1 There
mound: 1 we are!

of: 3
out: 1
place: 1
rest: 1

What is Spark ?

Apache Spark is an open-source, distributed processing system used for big data workloads.
It utilizes in-memory caching and optimized query execution for fast queries against data of any size. Simply
put, Spark is a fast and general engine for large-scale data processing.

The fast part means that it's faster than previous approaches to work with Big Data like classical MapReduce.
The secret for being faster is that Spark runs on memory (RAM), and that makes the processing much faster
than on disk drives.

The general part means that it can be used for multiple things like running distributed SQL, creating data
pipelines, ingesting data into a database, running Machine Learning algorithms, working with graphs or data
streams, and much more.

Spark

Iter. 1
—

Spar‘l’zZ

Most commons components (details)

o Apache Spark Core — Spark Core is the underlying general execution engine for the Spark platform
that all other functionality is built upon. It provides in-memory computing and referencing datasets in
external storage systems.

o Spark SQL — Spark SQL is Apache Spark’s module for working with structured data. The interfaces
offered by Spark SQL provides Spark with more information about the structure of both the data and
the computation being performed.

o Spark Streaming — This component allows Spark to process real-time streaming data. Data can be
ingested from many sources like Kafka, Flume, and HDFS (Hadoop Distributed File System). Then the
data can be processed using complex algorithms and pushed out to file systems, databases, and live
dashboards.

Others components (details)

o MLLlib (Machine Learning Library) — Apache Spark is equipped with a rich library known as
MLLlib. This library contains a wide array of machine learning algorithms- classification,
regression, clustering, and collaborative filtering. It also includes other tools for constructing,
evaluating, and tuning ML Pipelines. All these functionalities help Spark scale out across a
cluster.

o GraphX — Spark also comes with a library to manipulate graph databases and perform
computations called GraphX. GraphX unifies ETL (Extract, Transform, and Load) process,
exploratory analysis, and iterative graph computation within a single system.

Spark Execution

-éi-'

Spark Cluster

/

Spark Application

Spark Driver

Executors

}

Executors

Cluster Node

@@ Task per Core

Cluster Node

Spark Cluster

Worker 1 (noeud 1)

Worker 2 (noeud 2)

Architecture

o Spark permet de paralléliser les calculs et offre une couche d’abstraction
> Spark Driver : coordonne le traitement et le répartit entre les Executors
> Spark Executor : unité de calcul (~1 coeur & un processus java)
> Spark worker : noeud du cluster (peut contenir plusieurs executors)

Concepts de base

o Spark application : un programme utilisateur construit en utilisant les apis de spark. Ca consiste en un
programme driver et des executors sur un cluster.

o SparkSession: un objet qui fournit un point d’entrée a Uinteraction avec les fonctionnalités de spark et
permet la programmation de spark avec ses Apis. Rq: dans un shell spark interactif, le driver spark

instancie automatiquement cet objet. Dans une application spark, il faudra le créer manuellement.

@ job : un traitement parallele consistant en plusieurs “tasks” qui sont déclenchées suite a une spark
action.

o stage : chaque job est réparti en plusieurs stages dépendants les uns des autres.

o task : une unité de traitement exécutée sur un spark executor.

Transformations, actions, and lazy
evaluation

o Les traitements distribués de spark sont de 2 types :
> transformations : transforme un dataframe en un autre dataframe sans transformer l'original
(immutability)
> actions: déclenche l'évaluation d’un ensemble de transformation

