

databases, data engineering & big data

Introduction to Big Data & Data Engineering

ESME SUDRIA

Luc Marchand - luc.marchand.pro@proton.me
Maxence Talon - maxencetallon@gmail.com

About me

Data Engineer at TotalEnergies Digital Factory

maxencetallon@gmail.com

- 2 years at Octo Technology
- 1 years until now a Total Energies
- 2th year as a teacher at ESME
- Main topics of interests
 - Spark & Databricks
 - data engineering & ML ops
 - Best practices / Software craftsmanship

If you have any question, feel free to drop me a mail at any time

Global Syllabus

01

Introduction and main concepts

02

SQL, set up env and practical work

03

NoSQL world

04

Introduction to Big Data & Data Engineering

05

Kafka & event driven architectures

06

Spark & Delta

07

Warehouse, DBT & BI

08

IA - MLOps & RAG

Course syllabus

01

What is Big Data ?

02

Big data architectures

03

What is a data engineer ?

05

Columns -Oriented Storage

04

Transformations & orchestration

06

Hadoop ,Map Reduce & Spark

01

What is Big Data ?

A data-centric definition (Gartner's definition)

Big Data is characterized by the 3 V's Volume, Variety, Velocity

VOLUME

Before, working on complete data was impractical and analyses were made on samples. Today's technology often frees us from this constraint

VARIETY

More and more data sources (and data formats) are at hand: social networks, web sites, machine-generated logs, mobile location data, ...

VELOCITY

Analysis must be made on demand, in a timely fashion. Quick reaction is crucial because the value of data decreases quickly from the time it is produced

A general definition

*Big Data is the ambition of drawing an
economic benefit from the
quantitative analysis of data,
whether it be internal or external to an organization.*

What do you mean by quantitative analysis?

- Prediction
- Correlation

“Predict the future”

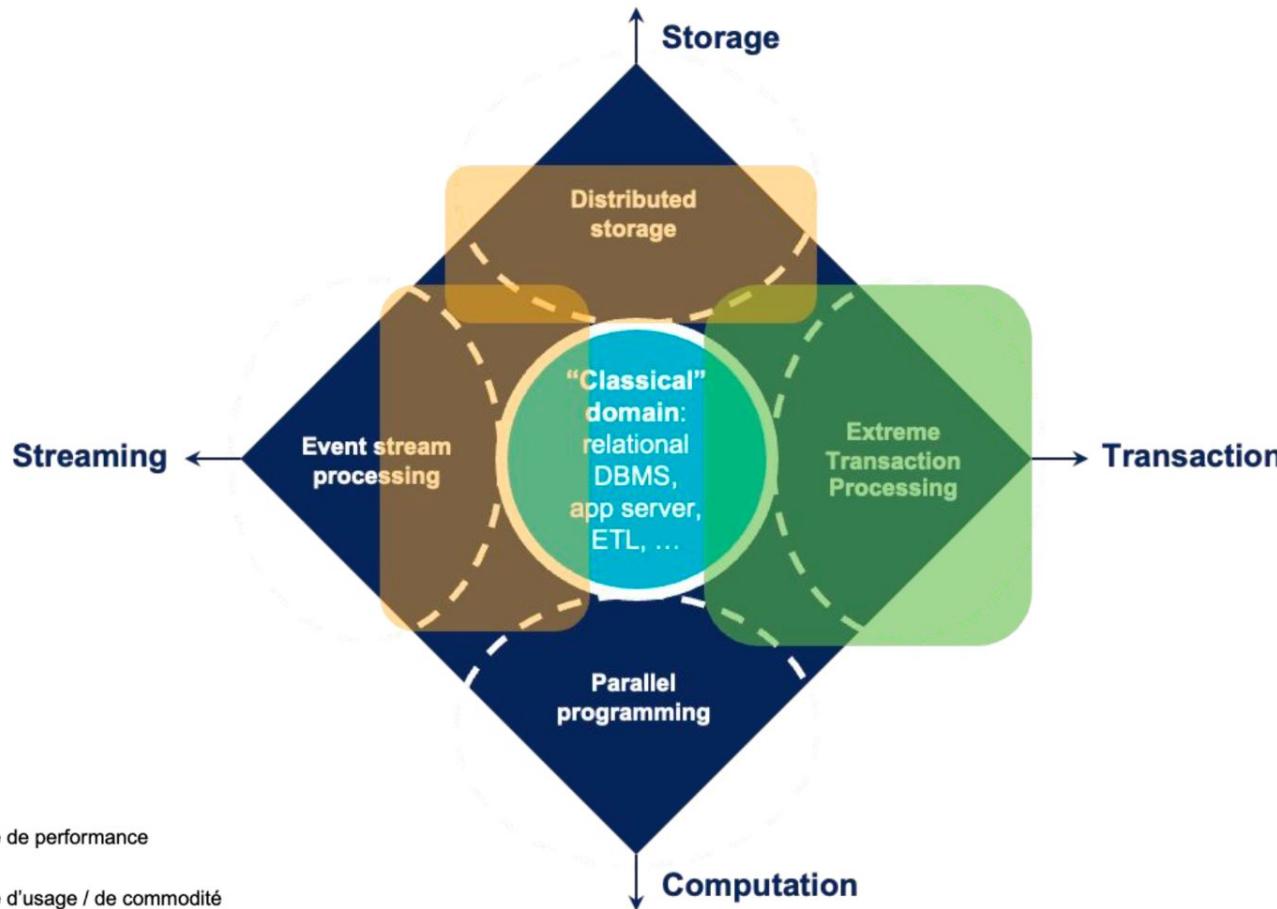
- Identification
- Classification

“Take appropriate decisions quickly”

- Simulation
- Optimization

“Consider new situations”

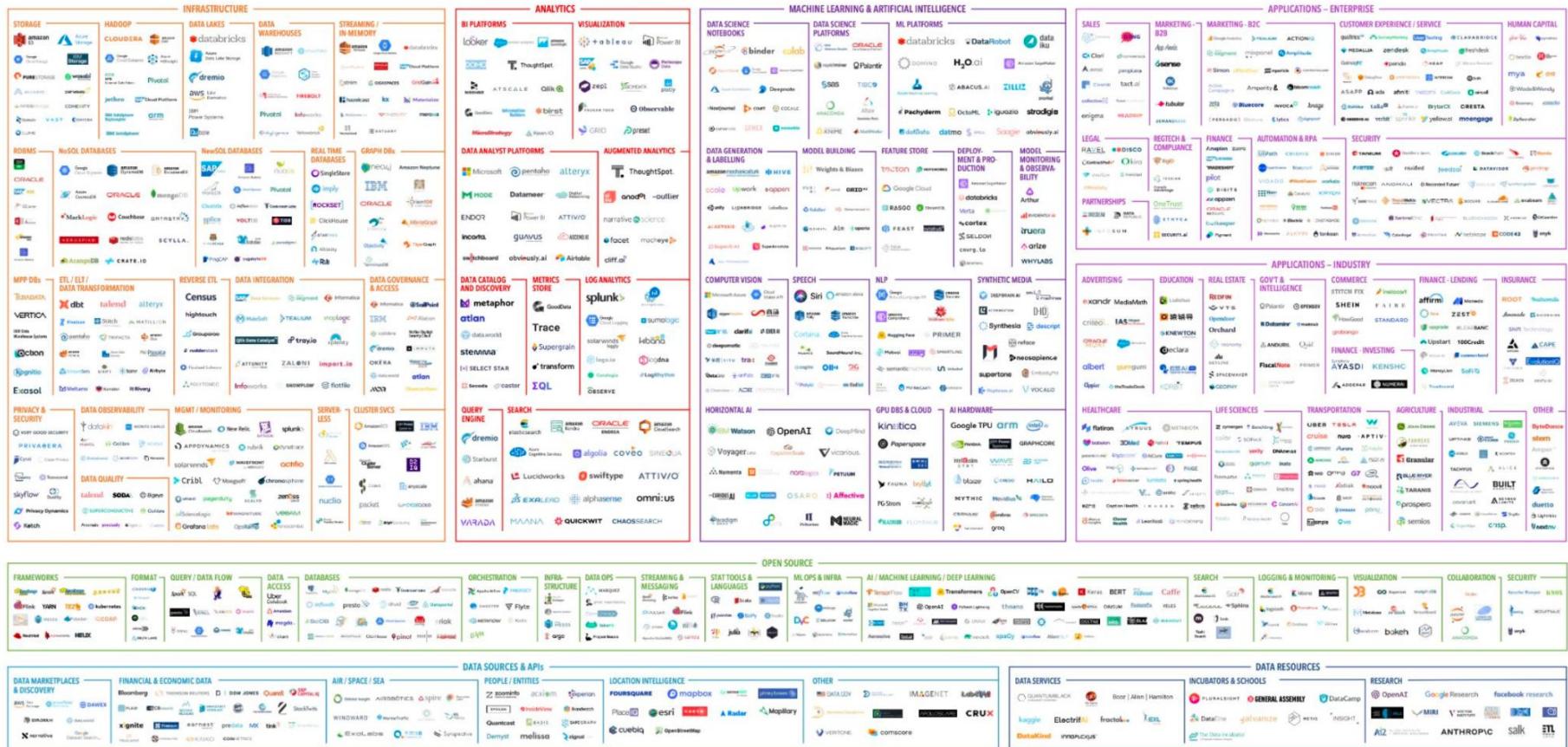
Choisir une famille technologique à partir du modèle en diamètre de limitations des DBMS classiques



Le Big data par le prisme de l'écosystème

Le Big Data rassemble sous une même bannière un large écosystème technologique

MACHINE LEARNING, ARTIFICIAL INTELLIGENCE, AND DATA (MAD) LANDSCAPE 2021



<https://mattturck.com/data2021/>

Transporter et stocker des données à un niveau jamais atteint

Infrastructure

L'infrastructure est la couche primaire d'un environnement big data. Elle fournit des solutions technologiques pour transporter et stocker des volumes de données qui dépassent les capacités d'une machine unique.

Chaque minute, Netflix diffuse environ 220 000 heures de vidéo à ses abonnés.

IA et Analytic

OBJECT
STORAGE

DATA
WAREHOUSE

STREAMING

BATCH
PROCESSING

Application & Entreprise

NoSQL
DATABASE

MPP
DATABASE

DATA
INTEGRATION

DATA
GOUVERNAN
CE

ETL / DATA
TRANSFORMAT
ION

AI HARDWARE

Des technologies que vous avez / aller aborder dans ce cours

Infrastructure

Data
Warehouse

dbt

IA et Analytic

Streaming/Event

Application & Entreprise

No Sql

Object storage

data lake

Batch processing

Transformer des données jusque là inexploitables en connaissances activables

Infrastructure

L'IA et l'analytique est la seconde couche d'un environnement big data. Le volume de donnée produit dépasse notre capacité à le stocker pour différer notre traitement.

IA et Analytic

BI PLATFORM

DATA
VISUALISATION

DATASCIENCE
NOTEBOOK

DATASCIENCE
PLATFORM

Application & Entreprise

COMPUTER
VISION

NLP

SEARCH

RAG

WEB / MOBILE
ANALYTIC

CLICK STREAM

Transformer des données jusque là inexploitables en connaissances activables

Outiller des métiers historiques et faire émerger de nouveaux usages

Infrastructure

Les applications et l'entreprise sont la 3ème couche d'un écosystème big data pour aider les entreprises à valoriser la donnée sur un segment / une verticale ciblée.

IA et Analytic

Des industries classiques comme la sécurité / la défense voient leur modèle bousculé par des solutions bout en bout qui intègrent les 2 couches précédentes pour changer un métier comme l'analyse de photographie satellite ou la reconnaissance de comportement sur des caméras de surveillance.

Concepts clés pour la couche d'application & entreprise

Application & Entreprise

MARKETING

FINANCE

CUSTOMER
EXPERIENCE

LEGAL

DEFENSE /
SECURITY

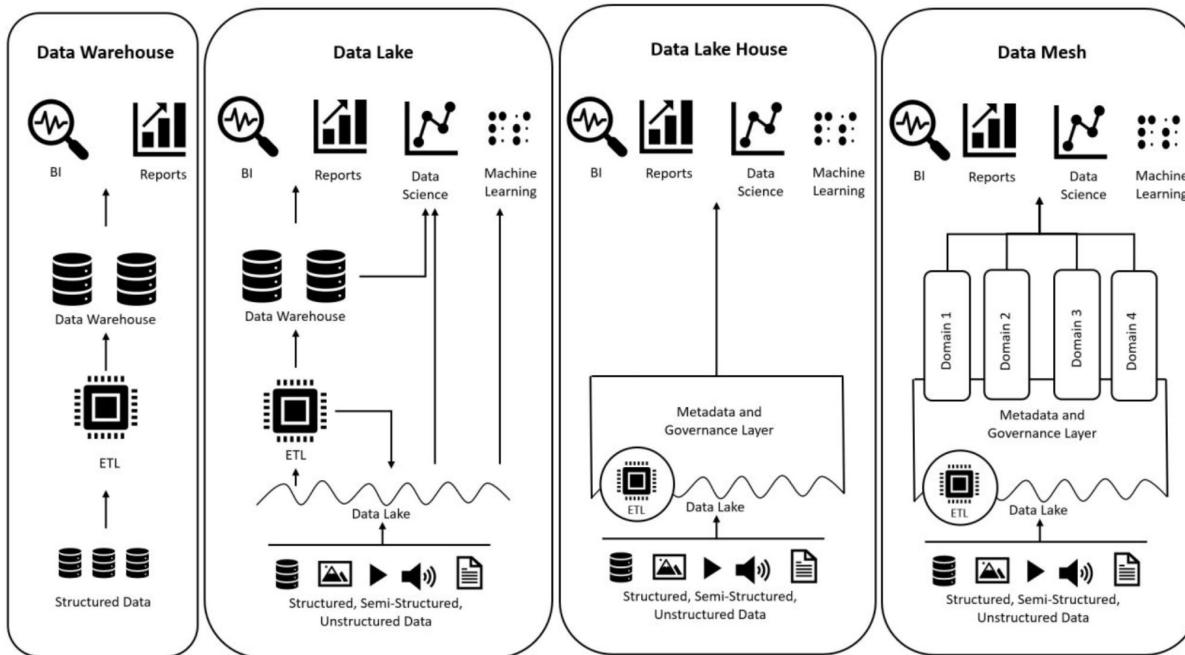
COMPLIANCE

TRANSPORTATI
ON

IOT

DIGITAL TWIN

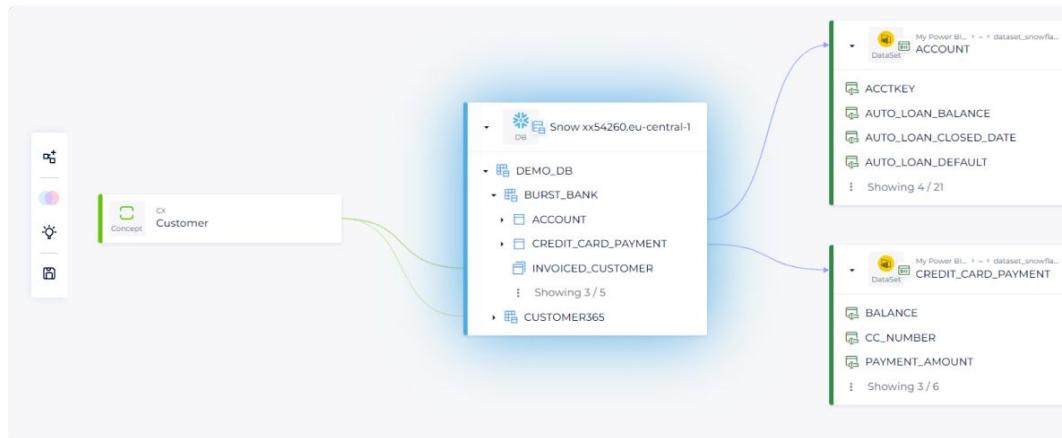
Récapitulatif des différentes architectures



Data Governance & Data Catalogue

Data governance in a data lake ensures the quality, security, and compliance of data by establishing policies and processes that unify and manage diverse data sources, enabling effective integration and analysis.

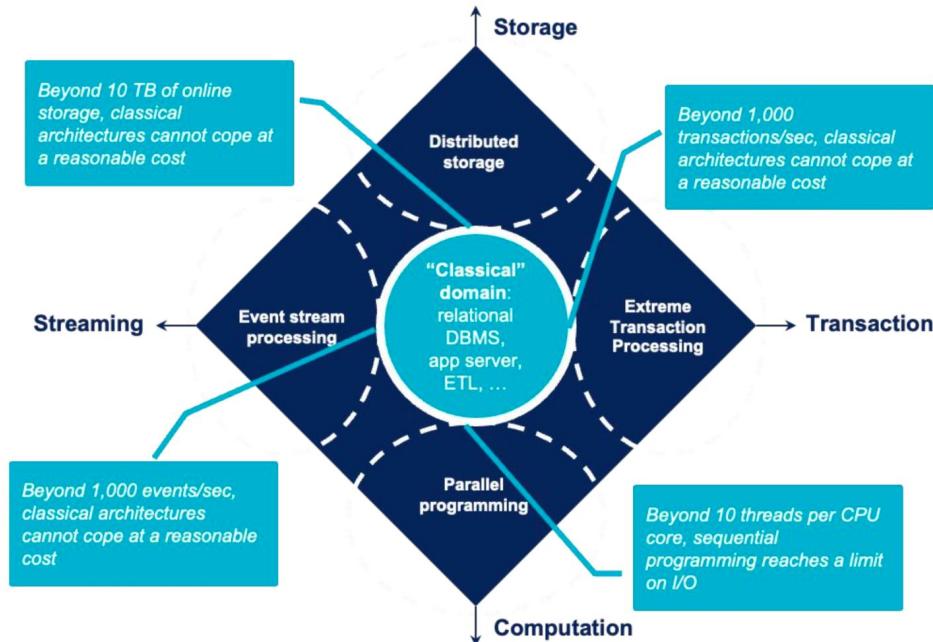
A data catalog in a data lake serves as a comprehensive inventory that organizes and provides metadata for all data assets, facilitating easy discovery, governance, and efficient data utilization.



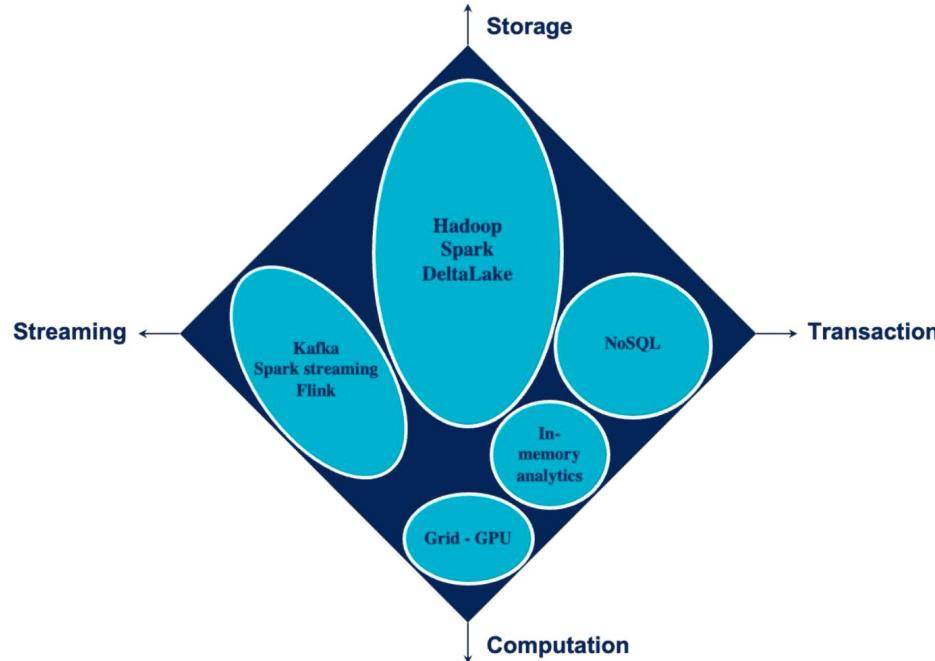
02

Big data architectures

An overview of the Big Data technological landscape



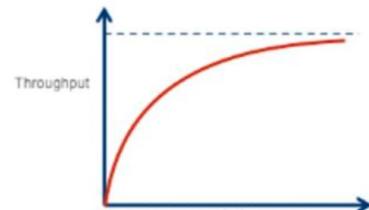
An overview of the Big Data technological landscape



NoSQL and Extreme Transaction Processing

- (see the course on NoSQL for details)
- As a quick reminder, NoSQL is a new database architecture that permits
 - > Higher storage capabilities
 - > Quicker transactions
 - > More flexible data models
- ... but at the cost of the ACID properties
- The performance is measured by 2 figures: **throughput** and **latency**
 - > Throughput is the number of transactions (fine-grained read or write operations) that can be requested in a given time. It is measured in tps (transactions per second)
 - > Latency is the delay between a request and its achievement. It is measured in milliseconds
 - > The two are not independent: usually latency increases with throughput, when requests come too fast

Extreme
Transaction
Processing



Parallel programming

- Humans tend to write sequential programs that mimic reasoning
 - > Do this... then with the result do that... then loop over this and do...
- Today's processors have several cores that can run processes or threads concurrently; in some situations it is desirable to leverage this parallelism to reduce the time taken by a task
- Not all tasks can be made parallel, but for those that can, frameworks can help dealing with the hard problems brought in by concurrent programming, abstracting the physical architecture of the processor
 - > Locks
 - > Synchronization of memory accesses
 - > Race conditions
 - > ...
- An extreme example is given by GPUs: thousands of high-performance processors capable of executing millions of mathematical operations per second
 - > Video games are very demanding; why not exploit this power for other purposes?

Distributed storage

- When the data to store or to process is too big to fit on a server, there is no choice but to **distribute** it across several servers
- Contrary to Extreme Transaction Processing (NoSQL), in the storage-bound class of problems we don't want to perform fine-grained transactions. Rather, we want to analyze it in its globality (for example, to compute exhaustive statistics)
 - The problem comes from the amount of data that has to be read off the disk and/or transferred across the network for computation
- This requires different classes of algorithms, like MapReduce, which is covered with Hadoop in the next section of this course
 - There are other algorithms and architectures
- Throughput is not a concern here, because we don't need to submit thousands of operations per second. But latency, the time taken to compute the result, can be problematic if queries are submitted by a user waiting for an answer

Distributed storage

Event Stream Processing

- An event is something that happens outside of the Big Data system
- Still, we may want to capture it and process it as an information.
In this case, the system observes infinite streams of events, and processing is triggered by the incoming of new events
 - > This pattern is called publish/subscribe (in this case, our system is the subscriber)
- Depending on the complexity of processing, several algorithms and techniques are available
 - > **Complex Event Processing** (CEP) performs elaborate operations and calculations on events. For example: moving average, joining 2 streams, detecting the absence of an otherwise expected event after a timeout, raising an alert, ...
 - > **Actors** are simple processing units that exchange messages in a **reactive** fashion. The complexity does not come from the rules but from the way the agents are organized
- The key figures here are, again, throughput and latency. If the latency is too high, new messages can't be buffered and will have to be dropped (sometimes this is acceptable, sometimes not)
- ESP and CEP are often used in high-frequency trading, and in smart grids

Event stream
Processing

03

What is a data engineer ?

Multiple definitions

Technical definition

A data engineer is an IT professional responsible for :

- designing,
- building,
- managing the infrastructure and systems that support data storage, processing, and analysis.

They create architectures for data generation, work on ETL (Extract, Transform, Load) processes, and ensure that data pipelines are efficient, reliable, and secure.

Data engineers handle large volumes of data, often preparing it for data scientists and analysts.

Business-Focused Definition

In a business context, a data engineer ensures that the organization has access to clean, consistent, and usable data for decision-making.

They manage the backend data operations and build tools to enable data-driven insights, helping the company transform raw data into valuable information that drives strategic planning and operational efficiency.

Developer's Perspective

For developers, a data engineer is a specialist who bridges the gap between raw data and data-driven applications.

They optimize databases, maintain data warehouses, and develop APIs and data models, allowing developers to create scalable, data-centric applications.

They focus on data structure, storage optimization, and system reliability.

From an Analytics/Scientific View

Data engineers are essential to the data science workflow, as they prepare and preprocess data for analysis.

They create and maintain data pipelines that allow data scientists to focus on building models and deriving insights without worrying about data quality or accessibility.

They work closely with data scientists to ensure that data sources are reliable, up-to-date, and accurate.

Globally

A data engineer

- designs,
- builds,
- manages the infrastructure and systems that enable efficient data storage, processing, and access, ensuring that data is reliable, organized, and available for analysis and decision-making.

04

Transformations & Orchestration

What's a ETL ? or ELT

Extract Transform Load or **Extract Load Transform** :

Extract: Data is gathered from various sources.

Transform: The data is cleaned and converted into a suitable format for analysis.

Load: The transformed data is then loaded into a target system

Basic ETL

```
import pandas as pd
from sqlalchemy import create_engine

# Step 1: Extract
data = pd.read_csv('input_data.csv')

# Step 2: Transform
# Example transformation: Remove rows with missing values and filter for a specific
condition
cleaned_data = data.dropna()
filtered_data = cleaned_data[cleaned_data['column_name'] > 10] # Adjust condition
as needed

# Step 3: Load
# Create a database connection (replace with your database URL)
engine = create_engine('sqlite:///my_database.db') # Example using SQLite

# Write the DataFrame to a SQL table
filtered_data.to_sql('my_table', con=engine, if_exists='replace', index=False)

print("ETL process completed successfully and data loaded into the database!")
```

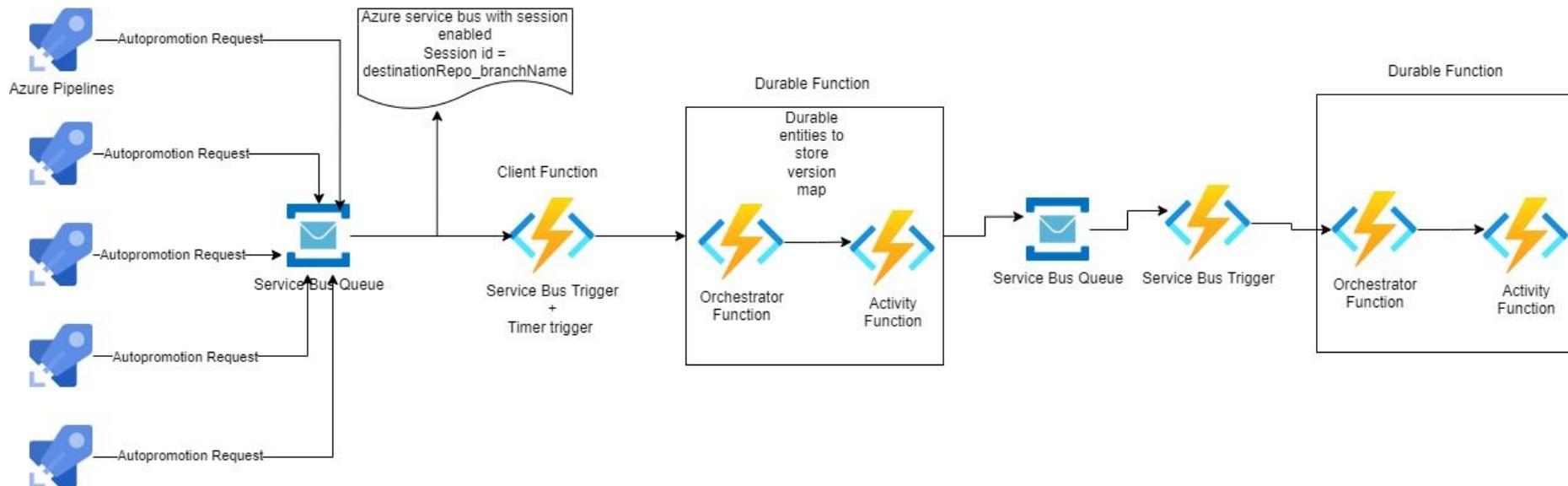

How do you Run our ELT in the Cloud ?

The world of the function

Function as a Service (FaaS): is a cloud computing model that allows developers to run code in response to events without managing servers, enabling scalable and cost-effective application development.

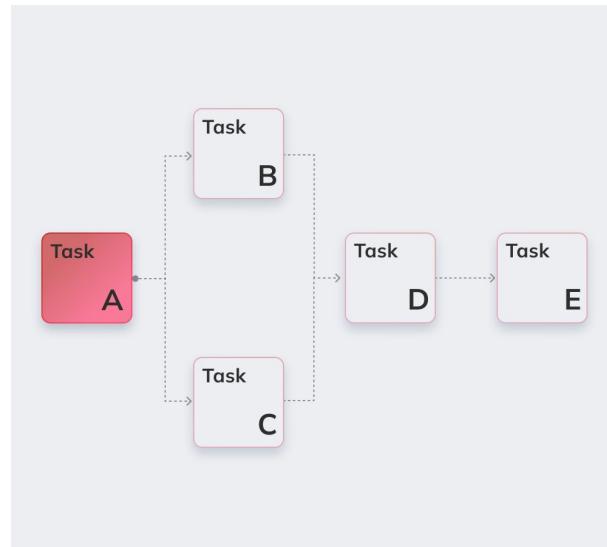
Event-Driven Execution , Cost Efficiency ,Scalability

FaaS nightmares



Pipeline orchestration

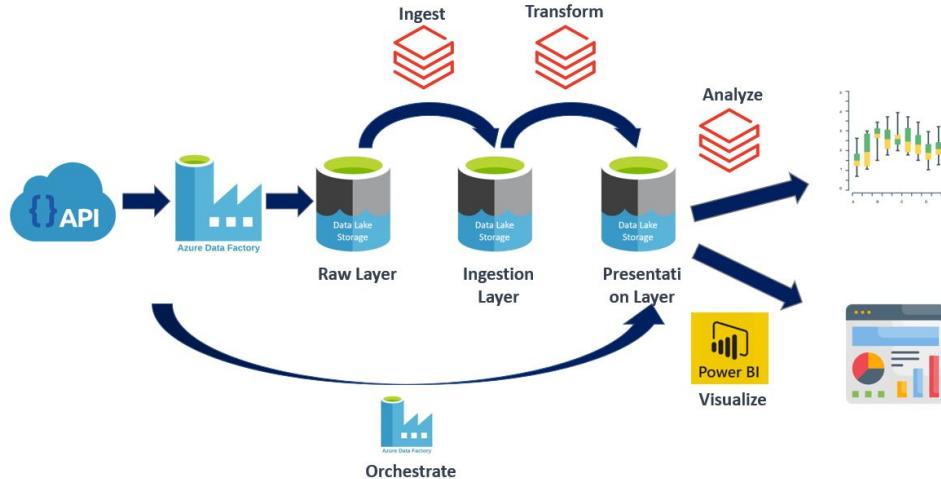
Apache Airflow's orchestration enables the automated scheduling, execution, and monitoring of complex workflows through a user-defined Directed Acyclic Graph (DAG) structure.



Data Layers

A data layer is a structured framework that collects and organizes data from various sources within a system, such as a website or application. It acts as an intermediary, ensuring that data is consistently captured and made accessible for analytics and other tools, facilitating better data management and integration across different platforms.

Exemple :



05

Stockage colonnes

Column-oriented storage

Column-oriented storage is a data management technique that organizes and stores data by columns rather than rows. This approach enhances query performance and data compression, making it particularly effective for analytical workloads and big data applications, where accessing specific columns quickly is crucial.



Parquet

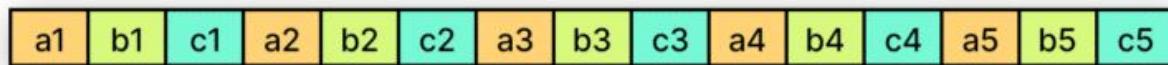
Index columnstore

Column-oriented storage

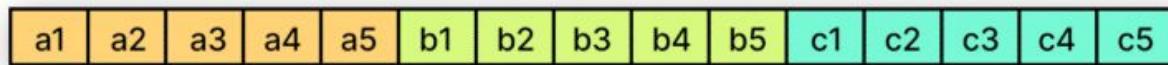
Logical table representation

a	b	c
a1	b1	c1
a2	b2	c2
a3	b3	c3
a4	b4	c4
a5	b5	c5

Row Layout



Column Layout



encoding

encoded chunk

encoded chunk

encoded chunk

Column-oriented storage

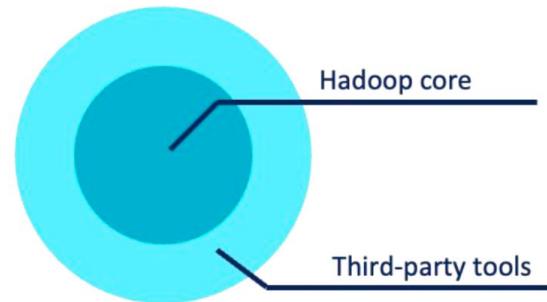
	Column-oriented storage	Row-oriented storage
Pros	<ul style="list-style-type: none">- Optimized for Analytics- Efficient Compression- Scalability	<ul style="list-style-type: none">- Efficient for Transactions- Simplicity
Cons	<ul style="list-style-type: none">- Slower for Transactions- Complex Schema Design	<ul style="list-style-type: none">- Less Efficient for Analytics- Limited Compression

06

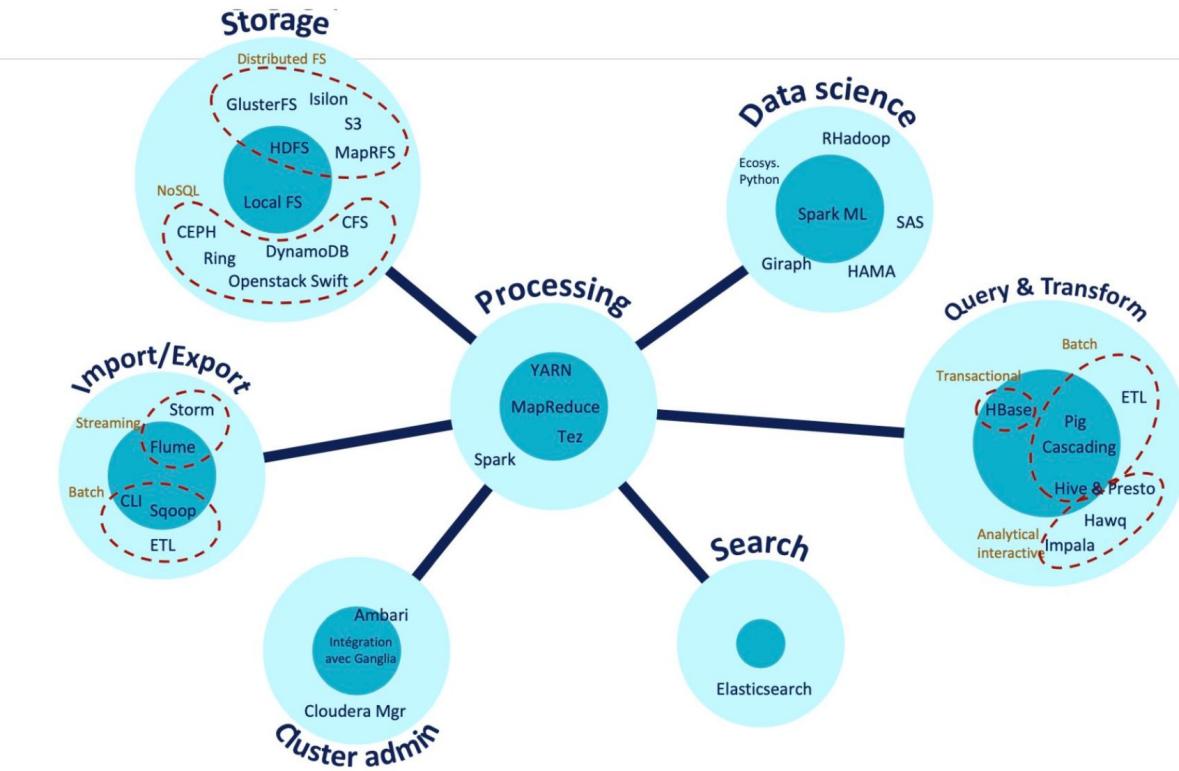
Hadoop , MapReduce & Spark

What is Hadoop ?

- Hadoop is a collection of open source projects providing a **distributed** and **scalable** framework for Big Data **storage** and **processing**
 - > Hadoop is mostly written in Java
- The project began in 2006 and has been managed by the Apache Foundation since 2009
- It was the most popular Big Data solution on the market, with hundreds of users around the world
 - > The most prominent users were also big contributors: Yahoo!, Facebook, Ebay
- It is the basis of a thriving software ecosystem



The Hadoop ecosystem



What can one do with Hadoop

Pretty much anything ;-) Here are some typical use cases

Retail

- Basket analysis
- Campaign management
- Customer fidelity management
- Supply-chain management
- Behavioral marketing
- Segmentation

Web & e-Commerce

- Clickstream analysis
- Targeting
- Fraud prevention
- Social network analysis
- Campaign management

Telecommunications

- CDR storage and analysis
- Churn prevention
- Behavioral marketing
- Network performance & optimization

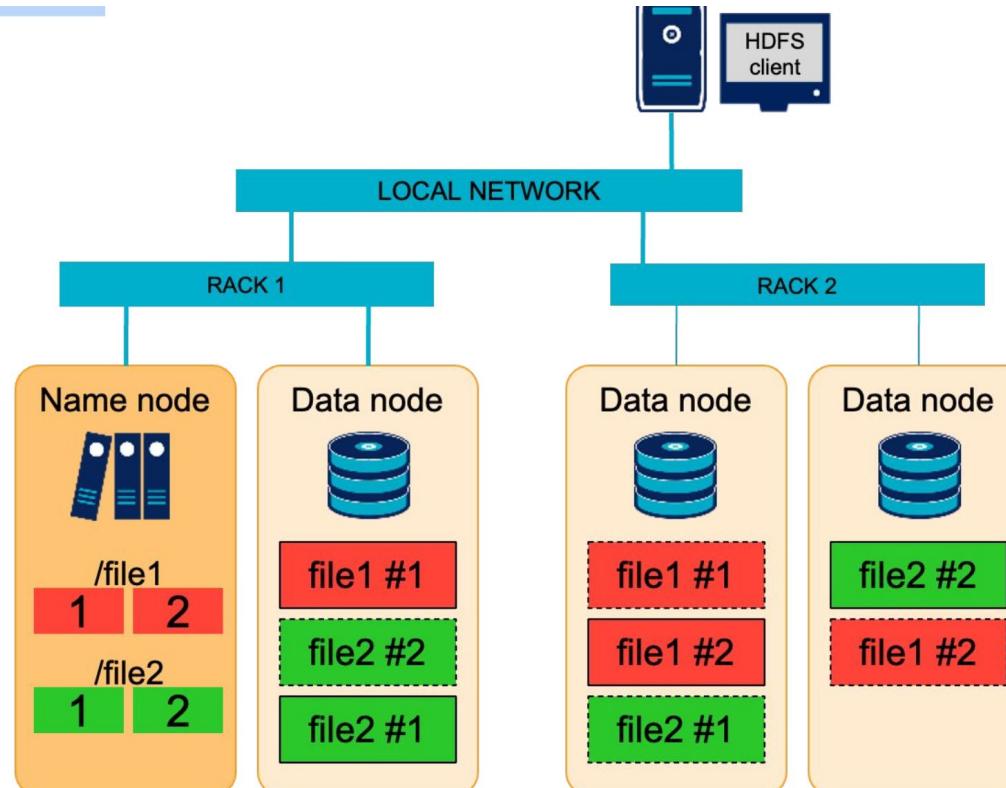
Industry and services

- Infrastructure monitoring
- Smart grids, smart cities
- Brand management
- Product usage management
- Campaign management

HDFS - the Hadoop Distributed File System

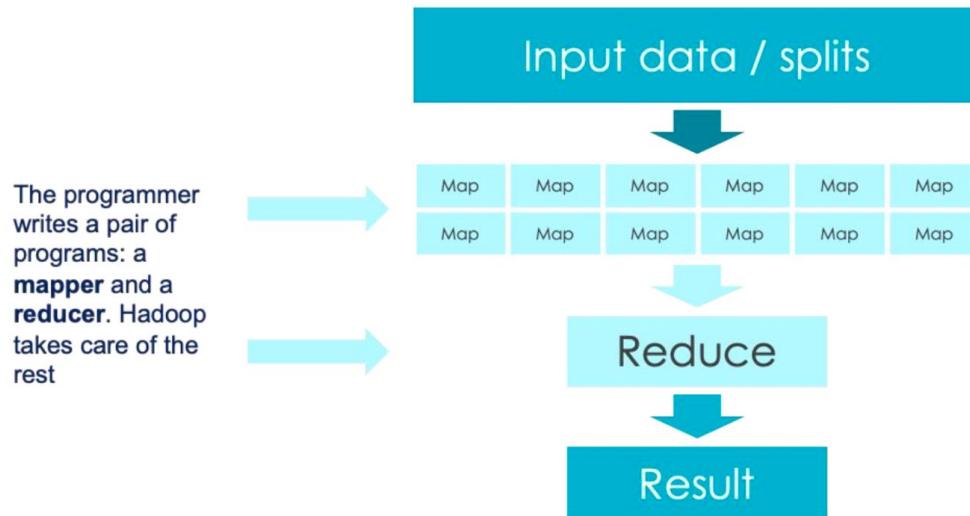
- HDFS is a **distributed file system** running on a cluster of servers
 - > That means that a file called /data/logs/weblogs-2013-01.txt could be scattered on dozens of servers, each holding a piece of the file
- It is **scalable** (when more storage space is needed, just add servers) and **resilient** (if a server crashes, the cluster keeps working and no data is lost thanks to **replication**)
 - > In terms of CAP theorem, it is **Available** and **Partition tolerant**
- HDFS is made for scanning through big data files, it is not meant to host small files like personal documents or programs
- An HDFS cluster is made of 2 types of servers
 - > Several **data nodes** that host the contents of the file
 - > A **name node** that knows which data node has each part of each file

An HDFS Cluster



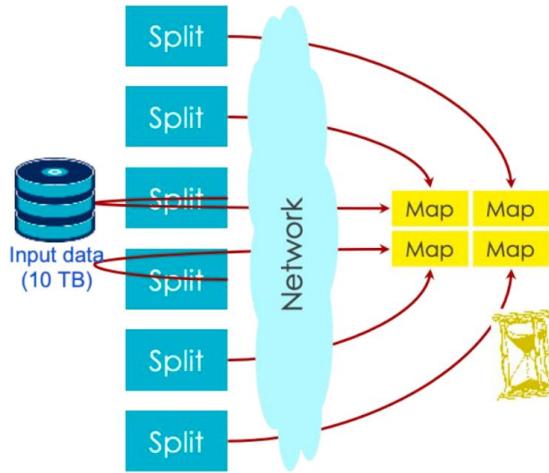
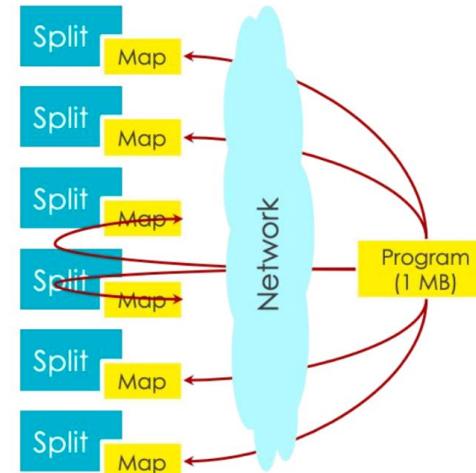
MapReduce for distributed data processing

- MapReduce is
 - > An **algorithm** for running in parallel programs that analyze data
 - > A **framework** for developing such programs
- It works by subdividing the data to process in smaller chunks called **splits**. Splits are processed in parallel during the **Map phase**. At the end the **Reduce phase** combines the results of the independent maps



MapReduce - The Map phase

- In Big Data scenarios, reading data from disk and transferring splits back and forth between servers is costly
- It is much faster to bring small programs (binaries, scripts, ...) close to the data; this principle is called **data locality**
 - > **Q:** When the data resides on HDFS, how does MapReduce know where each split belongs?



MapReduce (cont'd) - The Reduce phase

- All mappers have worked independently of each other, producing many fragments of result data
- The **Reduce phase** consists in gathering all those fragments together, and producing the final results
- **Example:** counting words in a set of documents

MapReduce (cont'd) - Jobs

- A Map and Reduce sequence that executes on a cluster is called a job
- There is a special service on the cluster, called the **job tracker**, that waits for job submissions
- On each data node, there is a **task tracker** that awaits orders from the job tracker. Such orders include launching a mapper, launching a reducer, or reporting on job execution progress
- Jobs are submitted directly by a user, or by other tools that hide the complexity of MapReduce
 - Example: Hive is a SQL frontend to MapReduce. Hive translates SQL to MapReduce code

A full example

Counting the number of occurrences of words in documents

This is MapReduce's "Hello World" example

What we want to achieve (only with many big files as input):

Input data

Too weary to go further they sought for some place where they could rest. For a while they sat without speaking under the shadow of a mound of slag; but foul fumes leaked out of it, catching their throats and choking them.

Result

a: 2	further: 1	sat: 1	to: 1
and: 1	go: 1	slag: 1	too: 1
but: 1	it: 1	some: 1	under: 1
catching: 1	leaked: 1	sought: 1	weary: 1
choking: 1	mound: 1	speaking: 1	where: 1
could: 1	of: 3	their: 1	while: 1
for: 2	out: 1	them: 1	without: 1
foul: 1	place: 1	they: 3	
fumes: 1	rest: 1	throats: 1	

We need to write a mapper and a reducer programs, and submit them as a job

A full example - the Mapper

- Remember, each mapper will receive a portion of the input data (a split), and will work **independently** of the others

MAPPER ALGORITHM

Split input_fragment into words, ignoring case and punctuation

For each word in input_fragment

 Set N to the number of occurrences of word in the fragment

 Emit a pair (word, N)

Split	Too weary to go further they sought for some place where	→	(too, 1) (weary, 1) (to, 1) (go, 1) (further, 1) (they, 1) (sought, 1) (for, 1) (some, 1) (place, 1) (where, 1)
Split	they could rest. For a while they sat without speaking	→	(they, 2) (could, 1) (rest, 1) (for, 1) (a, 1) (sat, 1) (without, 1) (speaking, 1)
Split	under the shadow of a mound of slag; but foul fumes	→	(under, 1) (the, 1) (shadow, 1) (of, 2) (a, 1) (mound, 1) (slag, 1) (but, 1) (foul, 1) (fumes, 1)
Split	leaked out of it, catching their throats and choking them.	→	(leaked, 1) (out, 1) (of, 1) (it, 1) (catching, 1) (their, 1) (throats, 1) (and, 1) (choking, 1) (them, 1)

A full example - the Shuffle & Sort

The **shuffle & sort** is part of the MapReduce algorithm, and is performed behind the scenes by Hadoop. The programmer doesn't have to write a program for it

The purpose of this step is to group together the (word, N) pairs emitted by the mappers, so the reducer have all information belonging to a given word in one place. There is no computation involved in this step

As a nice by-product, the resulting data is sorted on the keys (here, on words)

(too, 1) (weary, 1) (to, 1) (go, 1) (further, 1) (they, 1) (sought, 1) (for, 1) (some, 1) (place, 1) (where, 1)

(they, 2) (could, 1) (rest, 1) (for, 1) (a, 1) (sat, 1) (without, 1) (speaking, 1)

(under, 1) (the, 1) (shadow, 1) (of, 2) (a, 1) (mound, 1) (slag, 1) (but, 1) (toul, 1) (fumes, 1)

(leaked, 1) (out, 1) (of, 1) (it, 1) (catching, 1) (their, 1) (throats, 1) (and, 1) (choking, 1) (them, 1)

...
go □ 1
it □ 1
leaked □ 1
mound □ 1
of □ 2, 1
out □ 1
place □ 1
rest □ 1
...

A full example - the Reducer

Now the reducer, with the product of shuffle & sort, has all the information needed to count the occurrences of each word

REDUCER ALGORITHM

```
For each input pair (word, list of occurrences)
  Set S to the sum of the values in list
  Emit a string "word: S"
```

...

go □ 1

it □ 1

leaked □ 1

mound □ 1

of □ 2, 1

out □ 1

place □ 1

rest □ 1

...

...

go: 1

it: 1

leaked: 1

mound: 1

of: 3

out: 1

place: 1

rest: 1

...

**There
we are!**

What is Spark ?

Apache Spark is an open-source, **distributed processing system** used for big data workloads.

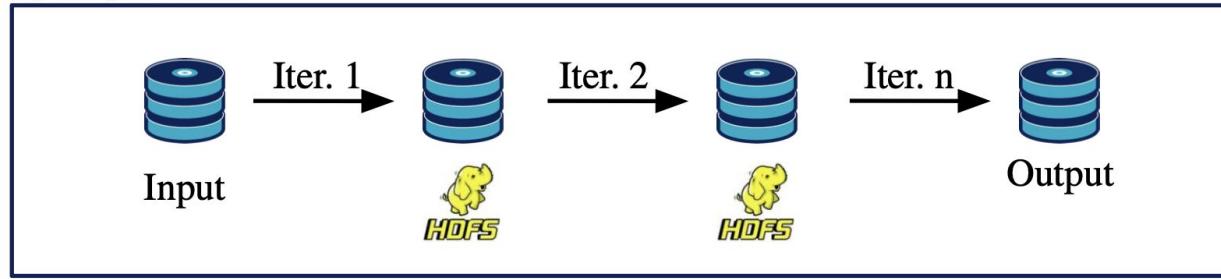
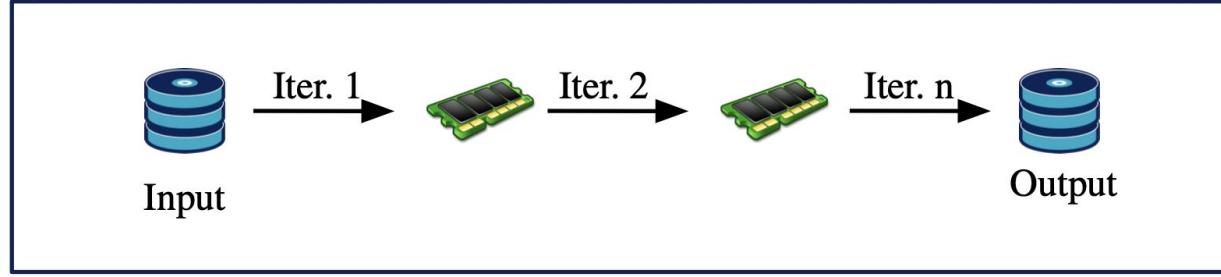
It utilizes **in-memory caching** and optimized query execution for fast queries against data of any size. Simply put, Spark is a fast and general engine for large-scale data processing.

The fast part means that it's faster than previous approaches to work with Big Data like classical MapReduce.

The secret for being faster is that Spark runs on memory (RAM), and that makes the processing much faster than on disk drives.

The general part means that it can be used for multiple things like running distributed SQL, creating data pipelines, ingesting data into a database, running Machine Learning algorithms, working with graphs or data streams, and much more.

Spark



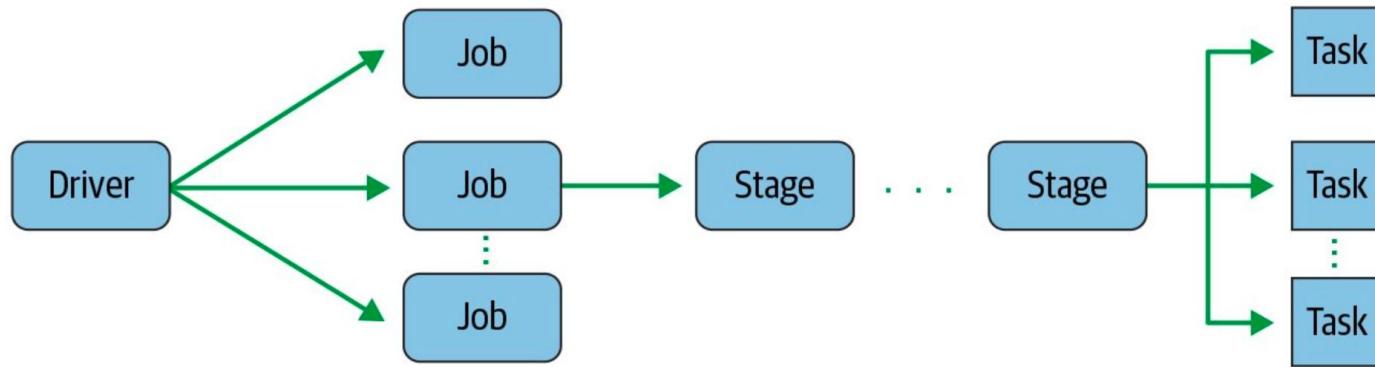
Most commons components (details)

- Apache Spark Core – Spark Core is the underlying general execution engine for the Spark platform that all other functionality is built upon. It provides in-memory computing and referencing datasets in external storage systems.
- Spark SQL – Spark SQL is Apache Spark's module for working with structured data. The interfaces offered by Spark SQL provides Spark with more information about the structure of both the data and the computation being performed.
- Spark Streaming – This component allows Spark to process real-time streaming data. Data can be ingested from many sources like Kafka, Flume, and HDFS (Hadoop Distributed File System). Then the data can be processed using complex algorithms and pushed out to file systems, databases, and live dashboards.

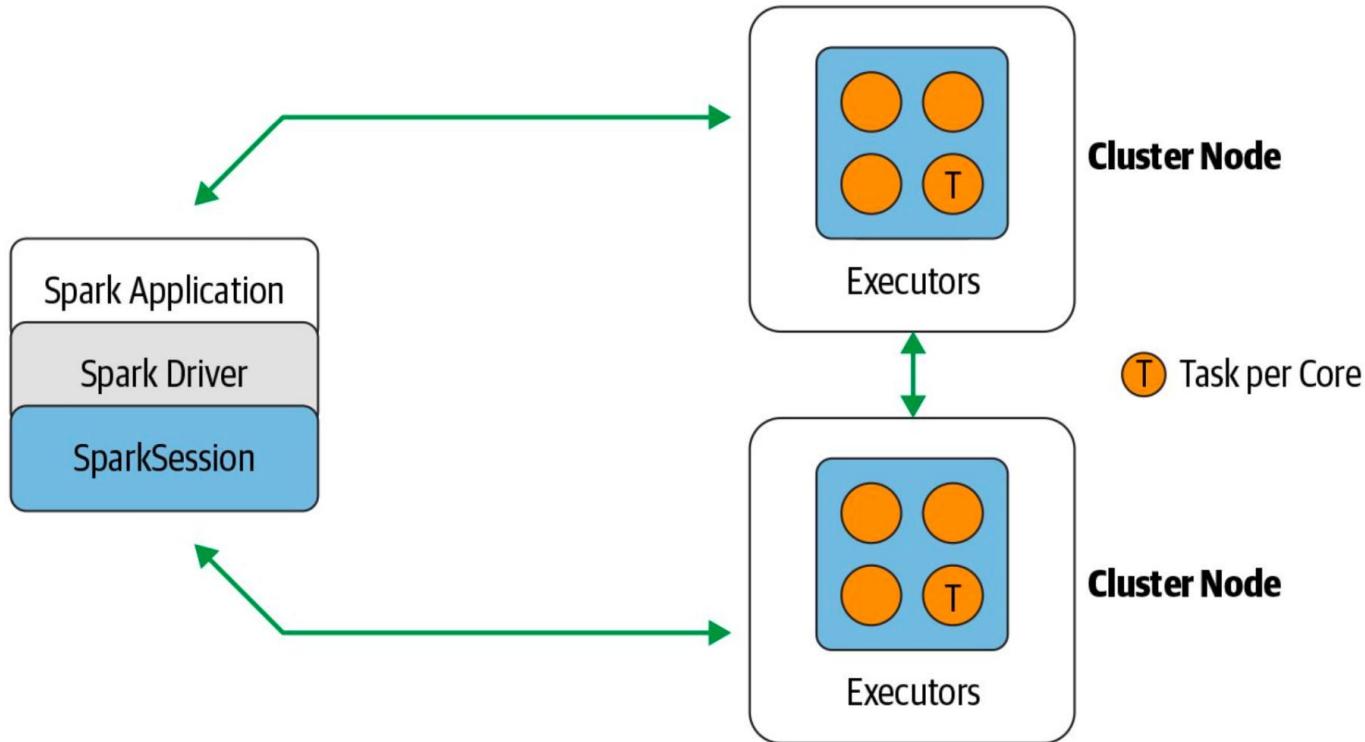
Others components (details)

- MLlib (Machine Learning Library) – Apache Spark is equipped with a rich library known as MLlib. This library contains a wide array of machine learning algorithms- classification, regression, clustering, and collaborative filtering. It also includes other tools for constructing, evaluating, and tuning ML Pipelines. All these functionalities help Spark scale out across a cluster.
- GraphX – Spark also comes with a library to manipulate graph databases and perform computations called GraphX. GraphX unifies ETL (Extract, Transform, and Load) process, exploratory analysis, and iterative graph computation within a single system.

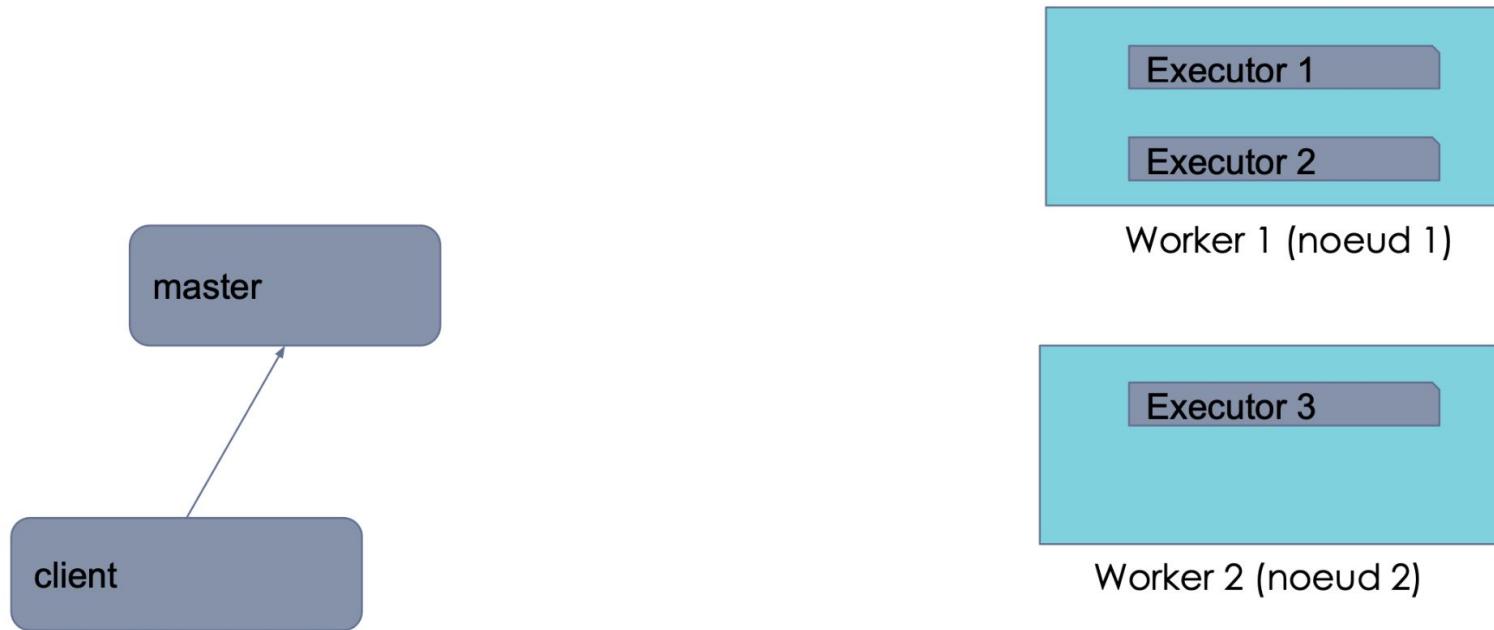
Spark Execution



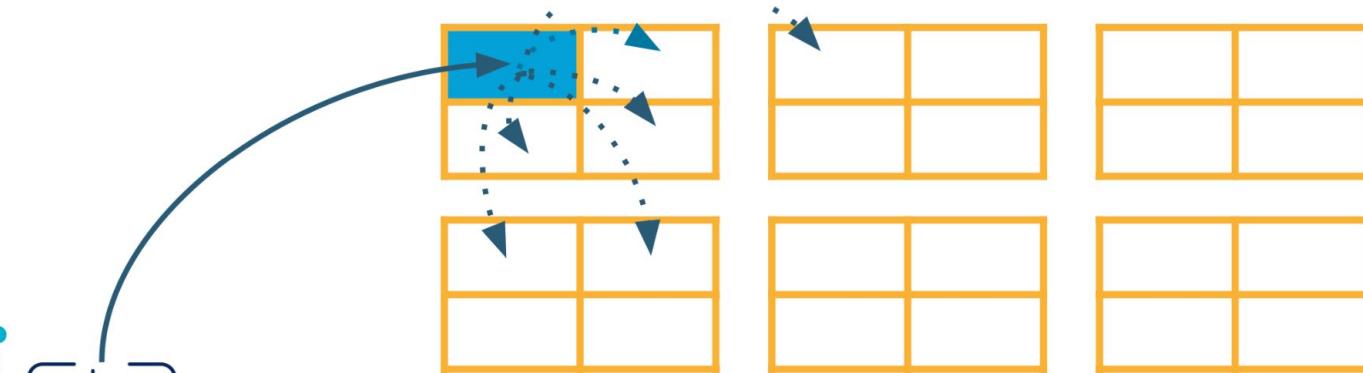
Spark Cluster



Spark Cluster



Architecture



- Spark permet de paralléliser les calculs et offre une couche d'abstraction
 - > Spark Driver : coordonne le traitement et le répartit entre les Executors
 - > Spark Executor : unité de calcul (~1 cœur & un processus java)
 - > Spark worker : noeud du cluster (peut contenir plusieurs executors)

Concepts de base

- Spark application : un programme utilisateur construit en utilisant les apis de spark. Ça consiste en un programme driver et des executors sur un cluster.
- SparkSession: un objet qui fournit un point d'entrée à l'interaction avec les fonctionnalités de spark et permet la programmation de spark avec ses Apis. Rq: dans un shell spark interactif, le driver spark instancie automatiquement cet objet. Dans une application spark, il faudra le créer manuellement.
- job : un traitement parallèle consistant en plusieurs “tasks” qui sont déclenchées suite à une spark action.
- stage : chaque job est réparti en plusieurs stages dépendants les uns des autres.
- task : une unité de traitement exécutée sur un spark executor.

Transformations, actions, and lazy evaluation

- Les traitements distribués de spark sont de 2 types :
 - > transformations : transforme un dataframe en un autre dataframe sans transformer l'original (immutability)
 - > actions: déclenche l'évaluation d'un ensemble de transformation