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Why ? & What is NoSQL ?



The origins

o The mid and late 2000’s were times of major changes in the IT landscape
>  Hardware capabilities significantly increased
> eCommerce and internet frade, in general, exploded

o Some internet companies, so-called the “Internet giants” (Yahoo!, Facebook, Google, Amazon,
Ebay, Twitter, ...), pushed fraditional databases to their limits. Those databases are by design hard
to scale

o Withrelational DBMSes, the only way to improve performance is by scaling up, i.e. getting bigger
servers (more CPU, more RAM, more disk, ...). One eventually hits a hard limit imposed by the
current technology
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The origins (cont’d)

o By rethinking the architecture of databases, those companies were able to make them scale at

will, by adding more servers to clusters instead of upgrading the servers.
> The servers are not made of expensive, high-end hardware; they are qualified as commodity servers (or
commodity hardware)

Scaling out:
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Power grows linearly
with the number of
servers (linear

Faster
More storage
More reliable
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Foreword

o The NoSQL term itself has taken various meanings over the course of time

o Itis thus impossible to give an exhaustive description of the NoSQL landscape. Besides, it would need
delving into very technical details of the implementations

o The following slides are a description of the most common patterns found with some well-known NoSQL
databases. Beware that some assumptions may not hold with other databases that are nonetheless
considered NoSQL

e Forexample, Redis is a NoSQL key/value database but it's difficult to distribute

o Those assumptions can be seen as so-called genes shared by many databases, forming the NoSQL DNA:

>

>
>
>
>

semi-structured data

data distribution,

replication,

the trade-offs behind the CAP theorem,
Elc....

o Understanding those genes is more important than remembering implementation details



A new world, an eldorado

The most salient feature of the NoSQL ecosystem is its variety. There are many NoSQL DBMSes (mostly open source) on the

market, each has its own approach, architecture and subtleties
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Structuration of data

Data comes in 3 flavors : structured, semi-structured and unstructured.

The data conforms to a
predetermined structure

The structure is a strong invariant of
the data model

All records of the same entity type
share the same format

Examples: tables in the relational
model, XML with DTD/XSD

Pros
. Easy processing since the structure
is known in advance
U Data quality is enforced

. Too restrictive for some types of data
(emails, documents scanned as
images, ...)

. When the structure changes, what
about existing data still in the old
format?

Reminder

The data has no structure; the only
known type is ‘object’

Objects are considered opaque
buckets of bytes, sometimes called
BLOBs (Binary Large OBjects)

Examples: raw files, data streams

Pros

. Can store anything including

heterogeneous or changing data
Cons

. There is no metadata for the
structure, so data cannot be
interpreted without an accompanying
program that knows how to read and
write them

A kind of hybrid between the first two
flavors

One still deals with unstructured
objects, but they bear some
meaningful metadata

. Example metadata: tags (an object
can have as many tags as
necessary), relationships

Examples: XML and JSON
documents in general, objects from
most NoSQL databases, documents
in a search engine

Pros

. The metadata give meaning to
objects, without the rigidity of a full
structure (compare Gmail tags with
Outlook folders @)

Cons

. Besides metadata, the contents of
the objects themselves are
unstructured so one still needs to
know how to interpret them




DNA1 - NoSQL favors semi-structured data to store versatile

documents

Dans la plupart des bases NoSQL, il est possible
d'insérer des données dans une collection sans
spécifier de schéma ou en spécifiant un schéma
partiel.

C’est le cas pour des bases comme .

e mongodb
e cassandra
o elasticsearch

Les moteurs NoSQL privilégient I'inférence de
schéma a lors de I'enregistrement plutdt que les
schémas rigides. Le schéma est toujours présent et
il est utile d’auditer sa structure lors de la
maintenance de ces bases pour vérifier la
consistance de son modeéle de données.

SEMI-STRUCTURED

Exemple pour Cassandra

INSERT INTO cycling.cvclist_category JSON *{
"category"” : "GC",
"points" : 780,
"id" : "829aa84a-4bba-411f-a4fb-38167a987cda",
"lastname" : "SUTHERLAND"

Y

INSERT INTO cycling.cvclist_category JSON {
"category” : "GC",
"points" : 780,
"id" : "829aa84a-4bba-411f-a4fb-38167a987cda",
"lastname" : "SUTHERLAND"

“ranking” : A+

Y




~ Our definition

e We adopt a more generic definition

A database is a collection of data that is accessible from a common
entry point

e All the other aspects (storage medium, list of operations, concurrent access, existence of a
computer application, ...) will depend on the context; most of them are under the responsibility
of a DataBase Management System (DBMS)

o Examples of DBMSes : Oracle, MySQL, MongoDB, ...
o An operating system is also a kind of DBMS, through its filesystem APIs

Operations

& Tesnlte Database(s)

The French abbreviation for DBMS is SGBD (Systéme de Gestion de Bases de Données)




DNA2 - A DBMS with a simplified query model to allow distributed

queries

2Tb

&

Le transfert sur le réseau des données est trop couteux pour effectuer une jointure sur des fransactions courtes (< 1/ 2
minutes).

Il existe des options pour effectuer des jointures limitées sur des bases distribués mais ces techniques dépassent le cadre
de ce cours.



We accept losing some features...

o The new architectures were made possible by relaxing some of the core assumptions of the

relational model. Here are some features that most of those new databases consciously left
aside (variations exist)

ACID transactions. Consistency and Isolation are usually not guaranteed; Atomicity is limited to operations
that affect only one entity

Foreign key constraints (consequence of the lack of consistency)

Storage/representation as tables and tuples

Data processing and transformation — the database is focused on storage

And, as a consequence of all the above, the SQL language, including joins

o The term NoSQL was first coined to unite those new DBMSes under a common banner: an
active opposition to the SQL/relational paradigms. It then took the broader meaning of

Not Only SQL, alluding to the fact that NoSQL DBMSes are just new, alternative ways of
storing data



... fo get new ones

o The previous discussion implies that we “lose” features when switching to a NoSQL DBMS.
This is true, but what to we get instead?

The ability to scale in our out, by changing the size of the cluster, controlling the operational costs of the
database. Cost is a very important driver here

Higher availability — with the new architectures it's easier to achieve high availability

The ability to spread data across several data centers (RDBMSes don't do it well)

Better performance, thanks to the distribution of data and the lack of transactions

Simpler development, and more flexibility in the choice of the data model

Simpler administration, tarageted at developers and not at highly specialized DBAs

o For the Internet giants, and for many companies running high traffic web sites, availability,
performance and cost control are the most important characteristics. Each hour of
unavailability, each slowdown in query time lead to significant loss of revenue — missed
orders, image degradation, churn



Data distribution

o  With most NoSQL databases, the data is not stored in one place (i.e. on one server). It is distributed among
the nodes of the cluster. When created, an object A is assigned to a node in the cluster. This is called
sharding — the amount of data assigned to a node is called a shard (also called partition)

e Having more cluster nodes implies a higher risk of having some nodes crash, or a network outage splitting
the cluster in two. For this reason, and to avoid data loss, objects are also replicated across the clusters

> The number of copies, called replicas, can be tuned. 3 replicas is a common figure

o The objects may move, as nodes crash or new nodes join the cluster, ready to take charge of some of the
objects. Such events are usually handled automatically by the cluster; the operation of shuffling objects
around to keep a fair repartition of data is called rebalancing
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o The objects may move, as nodes crash or new nodes join the cluster, ready to take charge of some of the
objects. Such events are usually handled automatically by the cluster; the operation of shuffling objects

around to keep a fair repartition of data is called rebalancing
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Data distribution

o  With most NoSQL databases, the data is not stored in one place (i.e. on one server). It is distributed among
the nodes of the cluster. When created, an object A is assigned to a node in the cluster. This is called
sharding - the amount of data assigned to a node is called a shard (also called partition)

e Having more cluster nodes implies a higher risk of having some nodes crash, or a network outage splitting
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>  The number of copies, called replicas, can be tuned. 3 replicas is @ common figure
DE
o The objects may move, as nodes crash or new nodes join the cluster, ready to take charge of some of the

objects. Such events are usually handled automatically by the cluster; the operation of shuffling objects
around to keep a fair repartition of data is called rebalancing
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Data distribution - principe d’une clé de sharding

La clé de sharding d'un enregistrement détermine la partition d'un cluster ou cet enregistrement
est écrit.

clé de partition to from
user1i brandy53@richard.biz donfleming@white.com
user1 anngardner@hotmail.com brandy53@richard.biz
user2 brandon93@yahoo.com markperez@yahoo.com
PARTITION PARTITION PARTITION PARTITION




Data distribution - principe d’une clé de sharding

La clé de sharding permet de distribuer le traitement des requétes a des noeuds de traitement
autonome. Ce mécanisme est a la base des applications SaaS grand public.

o retrouver les 50 derniers emails de userX

o rechercher les emails de userX qui contiennent le mot clé Poney
o dfficher les emails envoyés entre le 25/12/2019 et le 31/12/2019

PARTITION PARTITION PARTITION PARTITION



Data distribution - principe d’'une clé de sharding

o Des attributs naturels comme la localisation ou la date peuvent servir de clé de sharding.

PARTITION PARTITION PARTITION PARTITION
PARTITION PARTITION PARTITION PARTITION



Data distribution - lecture / écriture distribuée

o L'utilisation de la clé de sharding dans les prédicats de la requete permet de distribuer la
lecture des enregistrements sur I'ensemble du cluster.

PARTITION PARTITION PARTITION PARTITION




Data distribution - ANTI PATTERN - lecture / écriture concentrée

o L'utilisation de la clé de sharding dans les prédicats de la requete réalise des opérations sur
une seule partition. La charge de travail du cluster est concentrée sur un noeud.

PARTITION PARTITION PARTITION PARTITION



Trade off - lecture distribuée / écriture concentrée

o Le modele de requéte differe entre I'écriture qui se fait sur la partition la plus récente et la
lecture qui se fait sur I'ensemble des partitions. C'est un trade-off de design qu'il vous
faudra faire lors du design d'une clé de sharding.

PARTITION PARTITION PARTITION PARTITION




Some characteristics of a good sharding key

The perfect shard key would have the following characteristics:

o Allinserts, updates, and deletes would each be distributed uniformly across all of the shards
in the cluster

o All queries would be uniformly distributed across all of the shards in the cluster

o All operations would only target the shards of interest: an update or delete would never be
sent to a shard which didn't own the data being modified

o Similarly, a query would never be sent to a shard which holds none of the data being
queried



To Keep in mind

High-level concepts

{ R
SEMI-STRUCTURED DATA SIMPLIFIED QUERY MODEL
e In most of the NoSQL databases, it is NoSQL database only support simple
possible to insert data in a collection operation as insert, update, delete
without specifying a schema or by and guery with projection and
providing a partial schema selection
& J

DATA DISTRIBUTION PARTITION & SHARDING KEY

In order to scale out, data must be Partition is a logical unit that allow to

distributed on large cluster distributed data on a cluster

To ensure high availability, data is Statistic distribution of sharding key is a
replicated at least 3 times on different requirement to ensure scale out of
node distributed database




CAP theorem to popularise NoSQL

o Availability
o Consistency
o Partition Tolerance



Availability

o Availability (or lack thereof) is a property of the database cluster. The cluster is available if a request made
by a client is always acknowledged by the system, i.e. it is guaranteed to be taken into account

e That doesn't mean that the request is processed immediately. It may be put on hold. An available system
will at a minimum acknowledge it

o Practically speaking, availability is usually measured in percents. For instance, 99.99% availability means
that the system is unavailable at most 0.01% of the time, that is, at most 53 min per year
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Consistency

©

When talking about distributed databases, like NoSQL, consistency has a meaning that is somewhat more
precise than in the relational context

It refers to the fact that all replicas of an entity, identified by a key in the database, have the same value
whatever the node queried

With many NoSQL databases, updates take a little time to propagate across the cluster. When an entity's
value has just been created or modified, there is a short span during which the entity is not consistent.
However the cluster guarantees that it will eventually be, when replication has occurred. This is called
eventual consistency
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Partition Tolerance

o This property is verified if a system made of several interconnected nodes can stand a partition of the
cluster. In other words, the system is tolerant if it continues to operate when one or several nodes
disappear. This happens when nodes crash or when a network equipment is shut down, taking a whole
portion of the cluster away

o Partition tolerance is related to availability and consistency, but it is different still. It states that the system
continues to function internally (e.g. ensuring data distribution and replication), whatever its interactions
with a client
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The CAP Theorem

o The previous 3 properties, Consistency, Availability and Partition tolerance, are not independent. The CAP theorem,
or Brewer's theorem, states that a distributed system cannot guarantee all 3 properties at the same time

Consistency

(o] ®
Do Partition-
Availabilt
FRas y‘ Tolerance

e Thisis a theorem. That means it is formally true, but in practice it is less severe than it seems

>  The system or a client can often choose CA, AP or CP according to the context, and “walk” along the chosen edge by
appropriate tfuning
> Partition splits happen, but they are rare events (hopefully)

®  Rule of thumb
> Traditional relational DBMSes are CA or CP — consistency is a must, in case of a problem either bring the cluster down or
split it and expect heavy synchronization later

> Many NoSQL DBMSes are AP — availability is a must, and with big clusters failures happen so better live with it.
Consistency is only eventual
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Overview of the NoSQL
data models



Example of NoSQL data models

Document-oriented (e.g. MongoDB)

{ ‘_id": 123456,
‘type": 'product’,
‘name": ‘computer’,
‘features”: {

‘cpu_GHz" 3,
‘ram_GB" 8,
'‘brand’: 'Dell’
}
}

{ ‘_id": 123457,
‘type": 'product’,
‘name’: ‘blender’,
‘features”. {

'rpm": 10000,

}
}

voltage': 220V 50 Hz'

{ *_id": 123458,
'type': ‘'user’,
Ylogin': 'choupi92’,

'shopping_history" |...]
}

‘password": '‘AZnx403==",

Column-family aka BigTable (e.g. Cassandra)

login=

password=AZnx4

computer cpu_GHz=3 ram_GB=8 brand=Dell
blender rpm=10000 VOItage:‘iZOV 50

choupi92

03==

08/09/13=...

10/09/13=...

Key/Value pairs (e.g. Redis)

obj_123456

obj 123457
obj_123458

Graph (e.g. Neo4J)

choupi92

“type=product;name=computer;cpu GHz=3;..."

“type=product;name=blender;rpm=10000;..."

“type=user;login=choupi92;password=..."

bol‘lght




Key-Value

e .
y reais
e The key/value is the simplest model Memcached

e The developer has 2 operations at hand:
> put(key, value)
> get(key)

e The database is like a big, persistent hash table that stores (key, value) pairs. Keys and values are like opaque BLOBs.
When the database is distributed, the placement of an object is determined by a hash of its key

o Pros
> For the client, simplicity of the API
> For the server, simplicity of the storage model. In particular sharding is easy

e Cons
> Nothing prevents writing garbage into keys or values: the application must deal with it when unpacking the data
> No indexing by content: how to easily retrieve all objects that have an rom property?2

© When to use
> When the data to store is made of simple and independent objects, and uniform enough to be unpacked easily
> When no complex queries are necessary (all processing occurs on the client)

obi 123456 “type=product;name=computer;cpu GHz=3;..."
obi 12345 “type=product;name=blender;rpm=10000;..."
ob Mui “type=user;login=choupi92;password=..."




Document-oriented

(0]

In this model, objects are documents, i.e. frees of values
> Each document has a root and attributes
> Attribute values are scalars (integers, strings), lists or other objects
> Each object has a unique ID, a conventional property whose value serves as a key

Objects are organized into collections. Objects in the same collection need not
have the same schema - there is no mandatory structure

Pros
All programming languages support JSON or XML, which are natural representations
for objects

\%

> Sharding is easy
> Complex indexing on content (property values) is possible
> Updates on a particular object can be made atomic

Cons
> Object-to-object references must be emulated by remembering IDs; following
pointers is not efficient
When frequent updates occur inside objects, fragmentation occurs
Analytic queries (averaging the product prices for example) is not efficient because
all documents must be read and inspected
When to use
> When storing documents in the broader sense: web pages, blog posts, machine logs,

> When inter-document relationships are not essential

Document-oriented (e.g. MongoDB)

OBJECTS

[ *id": 123456,
‘type": 'product’,
‘name’. 'computer’,
‘features'. {

'‘cpu_GHz" 3,
'ram_GB" 8,
‘brand’: "Dell
)
}

{ *_id: 123457,
‘type": ‘product’,
‘name". ‘blender’,
‘features' {
'rpm’: 10000
'voltage”: '220V 50 HZ'
}
}

{ *_id": 123458,
'type": 'user’,
‘login": ‘choupi92’,
‘password". 'AZnx403==",
'shopping_history": |...]

. mongoDB




Column family (BigTable)

e The column-family model looks a bit like the relational model
>  Datais organized into tables and rows
>  Tables have fixed column families, in which arbitrary columns are nested
> For a given row, the contents of a column can thus be seen as a hash table with arbitrary (key, value) pairs
> Each row in a table is uniquely identified by a key

e Pros
> Very efficient on write
> Queries are efficient if data are stored in a row. column families are stored together on disk (reading only one column
does not require reading the whole row, hence less 1/O)
e Cons
> Storing documents a la MongoDB requires a modelization effort
e When to use
> When large objects with many columns fit the column family model
> When the application makes frequent accesses to portions of a row
> Time series

Cassandra

Amazon DynamoDB

login= password=AZ
choupi92 nx403==

08/09/13=... 10/09/13=...

AP ACHE
HBSASE




Graph

The data is made of entities linked together by relationships. This is actually a graph, with the nodes (or vertices) being the
entities, and the edges the relationships

Vertices and edges have a dictionary of properties
For example, a user vertex bears a login, a last connection date, ... and a user-to-product relationship has a type (bought,
visited, ...) and other properties like the date of the interaction, the context in which it occurred, and so on

o  Pros
> This representation can model almost anything; in particular it can simulate all the other models. The entities need not be of the same
type or belong to collections of related objects
> Traversing the graph is efficient because the DBMS optimizes those scenarios
> Graph theory is very rich and readily applicable: shortest path calculation, degree distribution, centrality measures, ...
o Cons
> Traversal is not as efficient if many edges link vertices that are on different shards, and finding an optimal distribution is
computationally hard. Graph DBMSes are not yet very good at this but they're getting better...
e  When to use
> When one must store data that exhibits a lot of mutual relationships between entities
> Graphs are a hot topic, they'll soon be omnipresent (interet of things, smart cities, ...)

. Neogj

“ the graph database




Choisir une famille technologique a partir du modéle en diamant de limitations
des DBMS classiques

Storage

Distributed
storage

. Event st Extreme .
Streaming i Transaction Transaction
Processing

processing

Parallel
programming

Computation



Choisir une famille technologique a partir du modele en diamant de limitations
des DBMS classiques

Storage

Beyond 10 TB of online

storage, classical

architectures cannot cope at Distributed
a ’aasonab’e cost storage

“Classical”
domain:

. Extreme
Streaming Event stream relational Transaction Transaction
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Choose an architecture



Rule 1: KEEP IT SIMPLE

o Some database engines as Postgresqgl, Oracle or MSSql offers a lot of features as document storage, full
text research, ... to help you to design a system.

o They adllow to move later the architecture design decision. This flexibility is a benefits when the usage of the
system is not clear enough.

o NoSQL databases are great assets to fulfill very specific needs. If the need change, take time to infroduce
a new system able to handle it. They have limitation.

o Document database is not design to handle many-to-many relation. If you are using it for that, it may only
work when the number of document is low.

e Column Family database is not design to handle well secondary index. For Cassandra, the feature exists
but the documentation is clear about the limitation.



Rule 2: COMPOSE A DATA STORAGE SOLUTION

e When you are designing some part of an information system, the use case may be too
complex to fit on one database solution.

o Differents data models fits different usage.

Click stream Mostly write simple events Column family database
Click stream (analytic) Read query on massive dataset Columnar database
Blog display Mostly read consistent document Document database
Blog search Scoring on full text Search engine

o This system requires careful design for data management. Data consistency may become
a nightmare. A good practice is to have a single source of truth for data type and ensure
same data replicate on other system (as search engine) derives from this single source of
truth.



Les Patterns De Choix Etendus

o Design by query
>  Probleme : connaitre la localisation des données est indispensable pour avoir des performances
linéaires

e Map - Reduce
> Probleme : appliquer des calculs d'agrégation sur une base distribuée

o Massively Parallel Processing
>  Probleme : appliquer un prédicat sur I'ensemble d'une base de donnée

o Schema on Write
>  Probleme : assurer la qualité de la donnée a I'écriture
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Focus on MongoDB



Overview of MongoDB

e MongoDB is one of the most well-known document-oriented databases. It can store and retrieve
millions of documents with a very good performance

o Documents that are related together are stored in the same collection; one can define as many
collections as necessary to accomodate for the various “types” of documents

o Documents are represented as JSON (JavaScript Object Notation) in MongoDB's native Javascript
framework (BSON to be more precise)

e In-memory approach

o The storage engine is the component of the database that is responsible for managing how data
is stored, both in memory and on disk
> Latest storage engine : WiredTiger (from MongoDB 3.0)

o Several distributions exists :
> MongoDB Community Edition
> MongoDB Professional & Enterprise Advanced



MongoDB Vocabulary

database database

Table Collection

Row Document (Bson)
Index Index

Join Embedded & Linking
Partition Shard

Partition key Sharding key

Source : https://www.mongodb.com/docs/manual/reference/sgl-comparison/



MongoDB'’s Services

e mongod (data node)
>  storage service
> within a Replica Set, a mongod can be a primary (master) or secondary (slave)

e mongos (routing service)
> sharding service
> routes the requests towards the proper servers

o Config server (mongod)
>  Stores the cluster’'s topology du cluster in a sharded cluster
> without this information the cluster would be useless
> must be at least 3 in order to ensure resilience

o  Arbiter (mongod)
> adllows the reelection of the primary in a replica set with an even number of voting members
> special mongod instances that do not store any data



MongoDB, Focus on the replica set

Client Application
Driver

Writes Reads

> A
. 'b"\o G//'
NV o
N> <
Secondary Secondary

Source : https://www.mongodb.com/docs/manual/replication/



MongoDB shared cluster architecture

' App Server

Router
(mongos)

/" 2 or more Shards *
(replica set)

Source : https://www.mongodb.com/docs/manual/sharding/

(replica set)



MongoDB Architecture setup for a POC
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MongoDB scalability
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Tools

Besides the server and administration executables, MongoDB comes with a Javascript shell,
called mongo, accessible on the command-line

The shell lets one issue queries as Javascript commands, like CRUD operations, map/reduce jobs,
efc.

We will use a third-party GUI front-end to the shell, called Robo3T, Studio3T or NosqlClient




JSON in a nutshell

e JSON is the syntax used by Javascript to instantiate anonymous objects, without having to
define a class first. In MongoDB, we use bson, an extension of this langage.

var myObject = {
anIntegerProperty: 1,
aStringProperty: "This is a string",
anArray: [1, 2, 3, 4],
aSubObject: {
iHavePropertiesToo: "Yes indeed"”,
anArray0OfObjects: [
hortObject: 42 },
( omplex: "embedded",
evenMore: {
guestion: "How deep am I?",
answer: 5
}
¥

{ andSoOn: "Down to any level" }

{ s
{m

]
}
)35
myObject.aSubObject.anArrayOfObjects[1].evenMore.quest

ion;



Creating objects in the database

o Inthe shell, there is an object called db, that exposes the data manipulation operations. All such
operations occur in a collection and are prefixed by db.collectionName

o Example of an insertion

db.products.save( { name: "Computer", price: 1000 } );

o  When doing that, MongoDB automatically assigns an ID to the new object: it provides a key. The ID
attribute has the special name _id. We can also provide the _id ourselves, provided it doesn't already exist
in the collection

o If there was an object with _id 123, it has been overwritten. This can be prevented by using the insert()
method instead of save(): insert() will fail if it is provided an already existing _id

db.products.save( { _id: 123, name: "Computer", price: 1000 } );

will returm an error because we wanna

db.products.insert( { _id: 123, name: "Computer", price: 1000 } ); rsimed i sevearicS



Updating objects in the database

o Overwriting an object whose _id we know is simply a matter of calling save(). The new “version” of the
object can have totally different properties

db.products.save( { _id: 123, hddSizesInGB: [6@, 250, 25@] } );

o Otherwise, we use the update() function with an object template, and a $set operation

db.products.update(
{ name: "Computer", price: 1000 },
{ Sset: { ramInGB: 8 } }

)i

o This will add a property raminGB to one object whose properties name and price match the template. If
we want to update all matching objects, we add a parameter:

db.products.update(
{ name: "Computer", price: 1000 },
{ Sset: { ramInGB: 8 } },
multi = true

Vs



Updating objects in the database (cont’'d)

o $set will add or modify properties of matching objects. There are other operators to perform more

elaborate operations
> $unset will remove a property from an object
> $inc willincrease the value of a property
> $add, $addToSet, $push, $pull, $pop. ... will manipulate array-valued properties

o To update nested objects, we can use the following notation

db.products.update(
{ name: "Computer", price: 1000 },
{ Sset: { ramInGB: 8 } },
multi = true

4
> The notation is valid in the object template, and in the operation itself ($set here)

e More on object templates in the next section



Querying

e Querying is done using the find() method

e  With no arguments or an empty object template, find() returns all objects in the collection

db.products.find();
db.products.find( {} );

o Finding objects by equality on property values

// Find all products whose price is 1000

db.products.find( { price: 1000 } );

// Find all products who have an cpu whose GHz property is 2.7

db.products.find( { "cpu.GHz": 2.7 } );

// Combine 2 criteria with an AND operation

db.products.find( { price: 1000, brand: "Dell” } );

// Combine with an OR operation

db.products.find( { Sor: { price: 1000, brand: "Dell” } } );



Querying (Cont'd)
o Finding objects by inequality

// Find all products whose price is not equal to 1000
// There also is Sgt (=), Sgte (>=), Slt (<), Slte (<=)
db.products.find( { price: { Sne: 1000 } } );

// Find all products whose price falls in a range
db.products.find( { price: { Sgt: 500, S1t: 2000 } } );

// Find all products whose RAM amount takes a value in a list
// There also is a Snin (not in) operator
db.products.find( { ramInGB: { Sin: [4, 8] } } );

e Matching nested objects

// Find all products that have an CPU exactly equal to

// { GHz: 2.7, cores: 4 }

// (exact same fields, in the same order, with the same values)
// Note the difference with the "cpu.GHz" notation)

db.products.find( { cpu: {
GHZES /0
cores: 4

il



Querying (Cont'd)

©

(O]

Restricting the number of properties in output (projection)

// Only show product name, price and _id (added by default)
db.products.find( {}, { name: 1, price: 1 } );

// Hide the _id
db.products.find( {}, { name: 1, price: 1, _id: @ } );

// Show all properties except name and price
// You can't mix 1's and @'s, except for the special _id field
db.products.find( {}, { name: @, price: @ } );

Paginating and sorting the results

// Only get 1@ products
db.products.find().1limit(19) ;

// Skip the first 5 products, and return the 1@ next ones
db.products.find().skip(5).1imit(10);

// This is really useful when some order is applied to the

// results first. Get the 1@ most expensive products. The ‘-1
// means descending order; '1' would mean ascending
db.products.find().sort( { price: -1 } ).limit(10)



Querying (Cont'd)

®

By default, the find() method (and the implicit query in the update() method) will scan the whole
collection, match each object against the object template, and process it if necessary

This can of course be very inefficient if there is a large number of objects in the collection. The I/O cost will
be very high

If a query is frequently executed, the fields participating in a query may need to be indexed (as with SQL,
don't do it if it's not necessary!)

// Index the name field of every object that has it
db.products.ensureIndex( { name: 1 } );
db.products.find( { name: "Computer” } ); // Fast!

// Same with a nested object’'s property
db.products.ensureIndex( { “cpu.GHz": 1 } );
db.products.find( { "cpu.GHz": 2.7 } );

> You can also index a whole nested object, for queries that match those (see previous slide)
> The _id property is automatically indexed, no need to call ensurelndex() on it



Aggregations

e Aggregations are specified as a pipeline, i.e. an array of operations such as
>  Selecting objects ($match), much like a SQL WHERE or a HAVING clause (depending on its position in the pipeline)
> Grouping them ($group), like a GROUP BY clause
> Manipulating intermediate or final results ($limit, $skip, $sort)

o Unlike SQL, all the operations above can be involved as many times as necessary in the aggregation
process. Lists of objects sift through the pipeline

// Get the top 10 most expensive computer brands, by average price
db.products.aggregate( [
‘ { Smatch: { name: “Computer” } },
{ Sgroup: { _id: "Sbrand”, avgPrice: { Savg: "Sprice” } } },
. { Ssort: { avgPrice: -1 } },
@ { $limit: 10 }

. Select :.Average price , Sort by avg. ;' Get first 10
Products computers by brand price results




DOJO



Sujet

1. Design SQL requests for each question in pgAdmin
2. Implement these requests in the python backend



THE END



