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Overview
● Programming environments, in this context, are the various ways and paradigms with 

which a client application can interact with a DBMS
● They have been evolving regularly for the last decades, giving way to more and more 

flexibility and functionality



Embedded SQL
● With the Embedded SQL pattern, a macro language lets one intersperse SQL statements within a 

regular program (in C, in Java, ...)

● A pre-processing step, before compilation, translates those the macros to accesses to the database

● This was encountered in the early days of database programming, but is now superseded by the other 
approaches

● So, that’s all for embedded SQL



Shell & command-line interface (CLI)
● These are the tools made available by DBMS vendors or third-party organizations, to run queries against 

interactively against a database

● Graphical tools can be used to
○ Explore the structure and the contents of a database
○ Try and refine queries before implementing them for good in an application (trial & error)
○ Administer the database
○ Examples: Oracle SQL Developer (generic), SQuirreL SQL Client (generic), Microsoft SQL Server, Management Studio 

(proprietary)

● Command-line tools can also meet this purpose; in addition they are used to
○ Run pre-made complex scripts, for example data migration scripts
○ Perform regular operations on a database, when run from a scheduler
○ Examples: psql, mysql shell, mysqldump, mongodb shell, ...



Stored procedures & triggers
● Stored procedures are functions written in a superset of SQL, that execute directly on the DBMS where the data resides

○ They appear as objects in the catalog of the DBMS

● Triggers are special procedures that are run by the DBMS upon data modification
○ Example with audit trail: every time a customer’s address is modified, log the modification into a table

● Stored procedures and triggers feature constructs belonging to imperative programming (local variables, branches, loops, ...), 
which are absent from standard SQL

○ The language is usually proprietary to the DBMS vendor – a standard (SQL3) was once proposed but was never adopted

● When to use them? Usually it’s best to have all the business logic in one place, i.e. in the application code (Java, C#, ...), not in 
the database

○ Stored procedures are useful when they bring a significant performance boost (there is virtually no network traffic involved since the code 
runs on the DBMS)

○ Triggers are useful when an action must absolutely be triggered, whatever the means of modification, e.g. in strong regulatory contexts. 
Application code cannot catch direct modifications by a rogue DBA tampering with the data directly, a trigger can



Client drivers
● Client drivers are APIs used by application code to talk to a DBMS, usually over the network. They let 

developers write code that emits queries, browses the results, queries the catalog, …
○ Queries are dynamic, they can be constructed piece by piece by the program

● All client drivers revolve around the concepts of Connection, Statement and ResultSet (also called 
Cursor)

● There are two types of drivers
○ Native clients, provided by the DBMS vendor, which expose their own API with possible specific extensions, in the 

target language
○ Middlewares such as JDBC, ODBC or ADO.NET to name a few, which expose a standard API and delegate work to 

a proprietary client hidden to the developer
■ The abstraction from the DBMS is useful in some contexts: it allows one to have different DBMSes for 

development and production, for example
■ This option is almost only valid for relational DBMSes



Object - Relational Mapping (ORM)
● Object-Relational Mapping is a technique that bridges the gap between 

object-oriented programming and the relational model
● More specifically, it adds metadata to the class definitions; the metadata tells the ORM 

layer:
○ What table and what fields in it persist instances of a given class (i.e. entities)
○ What integrity constraints must be enforced by the database
○ How relationships between classes must be handled (foreign key reference, association table, 

inheritance pattern, ...)
○ Where transaction boundaries are with respect to business logic methods (aka services)

● ORM also offer several variations on query languages, for easy retrieving and updating 
of objects

● There is no global standard, but in the Java world the ORMs comply to the JPA (Java 
Persistence API) standards, also called EJB3
○ The most common JPA implementation is Hibernate
○ JPA is not limited to relational databases and thus to ORMs
○ JS: Sequelize / Python: SQLalchemy



What more ? NoSQL
● NoSQL (“Not Only SQL”), as we will see in the next module, is a different world 

altogether

● NoSQL DBMSes, just like relational ones, come with their specific client drivers, and 
sometimes with more generic API adaptors like JPA
○ For some NoSQL databases, object-to-object mapping is trivial

● While proprietary APIs are sometimes limited by the modelization and capabilities (a 
non transactional key/value store offers no more that get() and put() methods), the 
flexibility comes from the broad choice of modelization and architectures that we get
○ Until recently, the approach was: Given a RDBMS imposed upon us, what API will be most 

productive for our project?
○ Today, the approach is: Given our technical and functional requirements, what type of database 

(or combination thereof) is most tailored to suit the needs?
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History
● SQL (Structured Query Language) is language meant to implement tasks that are specific to 

relational databases
○ Some NoSQL DBMSes offer an SQL abstraction over their modelization

● It is actually a legacy of standards that, in theory, allow to change DBMS without changing 
the code that accesses the database

● In practice, most DBMSes more or less conform to the SQL-92 standard; more advanced 
features are usually present but with a proprietary syntax, inherited from what was once 
extensions to the norm
○ Other significant differences lie in data type names, function names, and syntax for procedural SQL 

(stored procedures and triggers)
○ Porting existing code from one DBMS to another is difficult (a bit easier with an ORM)

● The rest of this document will be written with the Postgresql syntax and dialect



Data Types

Cf postgres documentation

https://www.postgresql.org/docs/current/datatype.html

https://www.postgresql.org/docs/current/datatype.html


3-state logic
● Predicates (boolean formulas) are omnipresent in SQL, in WHERE clauses and on join 

conditions 
○ Example: amount > 100 AND client.client_id = order.client_id

● Care must be taken when values involved in a predicate can take the NULL value: a 
condition involving NULL evaluates to the special boolean value UNKNOWN, and any 
combination of predicates involving UNKNOWN evaluates to UNKNOWN as well. 
UNKNOWN is neither true nor false!

● Example

○ select * from order where order_date = ’2013-07-08’ gives order no. 124, as expected
○ select * from order where order_date <> ’2013-07-08’ gives nothing!



Several languages in one
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SAMPLE DATA



QUERYING SINGLE TABLE

#DML



ALIASES



FILTERING THE OUTPUT
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FILTERING THE OUTPUT



QUERYING MULTIPLE TABLES
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QUERYING MULTIPLE TABLES



CHEATSHEET JOIN



AGGREGATION AND GROUPING
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AGGREGATION AND GROUPING



SUBQUERIES
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SET OPERATIONS
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SET OPERATIONS



Data Manipulation Language (DML) 
Commands



Data Definition Language (DDL) Commands



OPTIMISATION

● When you want to optimize your queries, YOU SHOULD ALWAYS MEASURE BEFORE OPTIMIZE !! 

● To measure, you can use the EXPLAIN COMMAND. This command is place before anything else in the 
query
○ Example : EXPLAIN SELECT * FROM city; #ADD EXAMPLE

● To optimize your query reading, you can use INDEX. 
○ I let you play with generative AI and internet to figure out more. Don’t hesitate to share what you’ve found with me.
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What are normal forms ? 



1NF AKA 1st Normal Form



2NF AKA 2nd Normal Form



3NF AKA 3rd Normal Form
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DOJO



Sujet

1. Design SQL requests for each question in pgAdmin
2. Implement these requests in the python backend



THE END
See you next week ;-)


