databases, data
engineering & big data

SQL, set up env and practical work

mailto:luc.marchand.pro@proton.me
mailto:maxence.tallon@gmail.com

Global Syllabus

Introduction and main Kafka & event driven
concepts architectures

SQL, set up env and

practical work Spark & Delta

NoSQL world Warehouse, DBT & Bl

Introduction to Big Data

& Data Engineering IA - MLOps & RAG

Course syllabus

Programming

; Normal forms
Environment

Structured Query

Language (SQL) Modeling Patterns

01

Programming
Environment

Overview

e Programming environments, in this context, are the various ways and paradigms with

which a client application can interact with a DBMS
e They have been evolving regularly for the last decades, giving way to more and more

flexibility and functionality

Today’s standards

-
-—
-
-
-

-
-
-
-
-

Client Y\ gy
Stored drivers Ny
procedures

Embedded
SQL

Embedded SQL

With the Embedded SQL pattern, a macro language lets one intersperse SQL statements within a
regular program (in C, in Java, ...)

A pre-processing step, before compilation, translates those the macros to accesses to the database

This was encountered in the early days of database programming, but is now superseded by the other
approaches

So, that’s all for embedded SQL

Shell & command-line interface (CLI)

These are the tools made available by DBMS vendors or third-party organizations, to run queries against
interactively against a database

Graphical tools can be used to

Explore the structure and the contents of a database

Try and refine queries before implementing them for good in an application (trial & error)
Administer the database

Examples: Oracle SQL Developer (generic), SQuirreL SQL Client (generic), Microsoft SQL Server, Management Studio
(proprietary)

o O O O

Command-line tools can also meet this purpose; in addition they are used to
o Run pre-made complex scripts, for example data migration scripts
o Perform regular operations on a database, when run from a scheduler
o Examples: psql, mysql shell, mysqgldump, mongodb shell, ...

Stored procedures & triggers

Stored procedures are functions written in a superset of SQL, that execute directly on the DBMS where the data resides
o They appear as objects in the catalog of the DBMS

Triggers are special procedures that are run by the DBMS upon data modification
o Example with audit trail: every time a customer’s address is modified, log the modification into a table

Stored procedures and triggers feature constructs belonging to imperative programming (local variables, branches, loops, ...),

which are absent from standard SQL
o The language is usually proprietary to the DBMS vendor — a standard (SQL3) was once proposed but was never adopted

When to use them? Usually it's best to have all the business logic in one place, i.e. in the application code (Java, C#, ...), notin
the database
o Stored procedures are useful when they bring a significant performance boost (there is virtually no network traffic involved since the code
runs on the DBMS)
o Triggers are useful when an action must absolutely be triggered, whatever the means of modification, e.g. in strong regulatory contexts.
Application code cannot catch direct modifications by a rogue DBA tampering with the data directly, a trigger can

Client drivers

e Clientdrivers are APIs used by application code to talk to a DBMS, usually over the network. They let
developers write code that emits queries, browses the results, queries the catalog, ...

o Queries are dynamic, they can be constructed piece by piece by the program
e All client drivers revolve around the concepts of Connection, Statement and ResultSet (also called

Cursor)

e There are two types of drivers
o Native clients, provided by the DBMS vendor, which expose their own API with possible specific extensions, in the

target language
o Middlewares such as JDBC, ODBC or ADO.NET to name a few, which expose a standard API and delegate work to

a proprietary client hidden to the developer
n The abstraction from the DBMS is useful in some contexts: it allows one to have different DBMSes for

development and production, for example
m This option is almost only valid for relational DBMSes

_)@ cation

Object - Relational Mapping (ORM)

e Object-Relational Mapping is a technique that bridges the gap between
object-oriented programming and the relational model
e More specifically, it adds metadata to the class definitions; the metadata tells the ORM
layer:
o What table and what fields in it persist instances of a given class (i.e. entities)
o What integrity constraints must be enforced by the database
o How relationships between classes must be handled (foreign key reference, association table,
inheritance pattern, ...)
o Where transaction boundaries are with respect to business logic methods (aka services)
e ORM also offer several variations on query languages, for easy retrieving and updating
of objects
e Thereis no global standard, but in the Java world the ORMs comply to the JPA (Java
Persistence API) standards, also called EJB3
o The most common JPA implementation is Hibernate
o JPAis not limited to relational databases and thus to ORMs
o JS:Sequelize / Python: SQLalchemy

What more ? NoSQL

e NoSQL (“Not Only SQL"), as we will see in the next module, is a different world
altogether

e NoSQL DBMSes, just like relational ones, come with their specific client drivers, and

sometimes with more generic API adaptors like JPA
o For some NoSQL databases, object-to-object mapping is trivial

e While proprietary APIls are sometimes limited by the modelization and capabilities (a
non transactional key/value store offers no more that get() and put() methods), the

flexibility comes from the broad choice of modelization and architectures that we get
o Until recently, the approach was: Given a RDBMS imposed upon us, what API will be most
productive for our project?
o Today, the approach is: Given our technical and functional requirements, what type of database
(or combination thereof) is most tailored to suit the needs?

0

Structured Query
Language (SQL)

History

e SQL (Structured Query Language) is language meant to implement tasks that are specific to
relational databases
o Some NoSQL DBMSes offer an SQL abstraction over their modelization
e |tis actually a legacy of standards that, in theory, allow to change DBMS without changing
the code that accesses the database

SQL-86 (ANSI) or 87 (ISO) First standard

SQL-89 Minor adjustments

SQL-92 Major adjustments

SQL:1999 or SQL3 Adds regexps, triggers, recursivity

SQL:2003 and beyond Add sequences, identifiers, XML, TRUNCATE, ...

e In practice, most DBMSes more or less conform to the SQL-92 standard; more advanced
features are usually present but with a proprietary syntax, inherited from what was once
extensions to the norm

o Other significant differences lie in data type names, function names, and syntax for procedural SQL
(stored procedures and triggers)
o Porting existing code from one DBMS to another is difficult (a bit easier with an ORM)

e The rest of this document will be written with the Postgresgl syntax and dialect

Data Types

Cf postgres documentation

https://www.postgresgl.org/docs/current/datatype.html

https://www.postgresql.org/docs/current/datatype.html

3-state logic

e Predicates (boolean formulas) are omnipresent in SQL, in WHERE clauses and on join
conditions
o Example: amount > 100 AND client.client_id = order.client_id
e (Care must be taken when values involved in a predicate can take the NULL value: a
condition involving NULL evaluates to the special boolean value UNKNOWN, and any
combination of predicates involving UNKNOWN evaluates to UNKNOWN as well.
UNKNOWN is neither true nor false!

e Example
order_id order_date customer_id

123 NULL 2567
124 2013-07-08 2567

o select * from order where order_date =’2013-07-08’ gives order no. 124, as expected
o select * from order where order_date <>’2013-07-08’ gives nothing!

Several languages in one

SQL - and its variants — is actually an aggregate of several languages in interaction with each

other
o DDL: Data Definition Language
> Management of the objects in the database:
creation, modification and deletion of tables,
columns, user types, indices, procedures, ...

o DML: Data Manipulation Language
> Management of fuples: CRUD operations and
more complex queries

e TCL: Transaction Control Language
> Management of transactions (open, commit,
rollback)

o Procedural
> Language for imperative programming in stored
procedures and friggers

o DB Admin
> Administration commands: configuration,
backups, process management, ...

02.1

Cheatsheet SQL

SAMPLE DATA

COUNTRY
id name population area
1 France 66600000 640680
2 Germany 80700000 357000
CITY
id name country_id population rating
1 Paris : 2243000 5

2 Berlin 2 3460000 3

QUERYING SINGLE TABLE

Fetch all columns from the country table:
SELECT *
FROM country;

Fetch id and name columns from the city table:
SELECT 1id, name
FROM city;

Fetch city names sorted by the rating column in the default
ASCending order:

SELECT name

FROM city

ORDER BY rating [ASC];

Fetch city names sorted by the rating column in the

DESCending order:

SELECT name

FROM city

ORDER BY rating DESC; #DML

ALIASES

COLUMNS

SELECT name AS city_name
FROM city;

TABLES
SELECT co.name, ci.name
FROM city AS ci
JOIN country AS co
ON ci.country_id = co.1id;

FILTERING THE OUTPUT

COMPARISON OPERATORS

Fetch names of cities that have a rating above 3:
SELECT name

FROM city

WHERE rating > 3;

Fetch names of cities that are neither Berlin nor Madrid:
SELECT name
FROM city
WHERE name != 'Berlin'
AND name != 'Madrid';

FILTERING THE OUTPUT

TEXT OPERATORS
Fetch names of cities that start with a 'P' or end with an 's":
SELECT name
FROM city
WHERE name LIKE 'P%'
OR name LIKE '%s';

Fetch names of cities that start with any letter followed by 'ublin’
(like Dublin in Ireland or Lublin in Poland):

SELECT name

FROM city

WHERE name LIKE '_ublin';

FILTERING THE OUTPUT

OTHER OPERATORS

Fetch names of cities that have a population between 500K and
S5M:

SELECT name

FROM city

WHERE population BETWEEN 500000 AND 5000000;

Fetch names of cities that don't miss a rating value:
SELECT name

FROM city

WHERE rating IS NOT NULL;

Fetch names of cities that are in countries with IDs 1, 4, 7, or 8:
SELECT name

FROM city

WHERE country_id IN (1, 4, 7, 8);

QUERYING MULTIPLE TABLES

INNER JOIN

JOIN (or explicitly INNER JOIN) returns rows that have
matching values in both tables.
SELECT city.name, country.name
FROM city
[INNER] JOIN country
ON city.country_id = country.id;

CITY COUNTRY
id name country_+id id name
1 Paris 1 1 France
2 Berlin 2 2 Germany

3 Warsaw 4 3 Iceland

QUERYING MULTIPLE TABLES

LEFT JOIN returns all rows from the left table with
corresponding rows from the right table. If there's no matching
row, NULLs are returned as values from the second table.
SELECT city.name, country.name
FROM city
LEFT JOIN country

ON city.country_id = country.id;

CITY COUNTRY
id name country_id id name
1 Paris 1 1 France
2 Berlin 2 2 Germany
3 Warsaw 4 NULL NULL

QUERYING MULTIPLE TABLES

RIGHT JOIN returns all rows from the right table with
corresponding rows from the left table. If there's no matching
row, NULLs are returned as values from the left table.
SELECT city.name, country.name
FROM city
RIGHT JOIN country

ON city.country_id = country.id;

CITY COUNTRY
id name country_id id name
1 Paris 1 1 France
2 Berlin 2 2 Germany
NULL NULL NULL 3 Iceland

QUERYING MULTIPLE TABLES

FULL JOIN (orexplicitly FULL OUTER JOIN) returns all rows
from both tables - if there's no matching row in the second table,
NULLs are returned.

SELECT city.name, country.name
FROM city

FULL [OUTER] JOIN country
ON city.country_id = country.1id;

CITY COUNTRY
id name country_id id name
1 Paris 1 1 France
2 Berlin 2 2 Germany
3 Warsaw 4 NULL NULL
NULL NULL NULL 3 Iceland

QUERYING MULTIPLE TABLES

CROSS JOIN returns all possible combinations of rows from

both tables. There are two syntaxes available.
SELECT city.name, country.name
FROM city

CROSS JOIN country;

SELECT city.name, country.name
FROM city, country;

CITY COUNTRY
id name country_id id
1 Paris 1 1
1 Paris 1 2
2 Berlin 2 1
2 Berlin 2 2

name
France
Germany
France

Germany

QUERYING MULTIPLE TABLES

NATURAL JOIN will join tables by all columns with the same

name.

SELECT city.name, country.name

FROM city

NATURAL JOIN country;

CITY COUNTRY

country_id id name name id

6 6 San Marino San Marino 6
7 7§ Vatican City Vatican City 7§
5 9 Greece Greece
10 11 Monaco Monaco 10

NATURAL JOIN used these columns to match rows:
city.id, city.name, country.id, country.name.
NATURAL JOIN s very rarely used in practice.

CHEATSHEET JOIN
SQL JOINS

SELECT <sclect_list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key

SELECT <sclect_list>
FROM TableA A
RIGHT JOIN TableB B
ON AKey = B.Key

SELECT <sclect_list>
FROM TablcA A
INNER JOIN TablcB B
ON A.Kcy = B.Key

SELECT <sclect_list> SELECT <select_list>
FROM TableA A FROM TablcA A

LEFT JOIN TableB B RIGHT JOIN TablcB B
ON AKcy = B.Key ON A.Kcey = B.Key
WHERE B.Key IS NULL WHERE A.Key IS NULL

SELECT <sclect_list>
SELECT <sclect_list> FROM TablcA A

FROM TableA A FULL OUTER JOIN TableB B
FULL OUTER JOIN TablceB B ON A.Kcy = B.Key

ON A.Key = B.Key WHERE A.Key IS NULL

©CL Moffatt, 2008 OR B.Key ISNULL

AGGREGATION AND GROUPING

GROUP BY groups together rows that have the same values in specified columns. It
computes summaries (aggregates) for each unique combination of values.

CITY
id name country_id
1 Paris 1
§ CITY
101 Marseille 1 -
country_id count
102 Lyon 1
: —_— 1 3
2 Berlin 2
2 3
103 Hamburg 2
: 4 2
104 Munich 2
3 Warsaw 4
105 Cracow 4

AGGREGATION AND GROUPING

AGGREGATE FUNCTIONS

® avg(expr) —average value for rows within the group

e count (expr) - count of values for rows within the group
® max (expr) — maximum value within the group

* min(expr) — minimum value within the group

® sum(expr) —sum of values within the group

AGGREGATION AND GROUPING

EXAMPLE QUERIES

Find out the number of cities:
SELECT COUNT(x)
FROM city;

Find out the number of cities with non-null ratings:
SELECT COUNT(rating)
FROM city;

Find out the number of distinctive country values:
SELECT COUNT(DISTINCT country_-id)
FROM city;

AGGREGATION AND GROUPING

Find out the smallest and the greatest country populations:
SELECT MIN(population), MAX(population)
FROM country;

Find out the total population of cities in respective countries:
SELECT country_id, SUM(population)

FROM city

GROUP BY country_1id;

Find out the average rating for cities in respective countries if the average is above 3.0:
SELECT country_id, AVG(rating)

FROM city

GROUP BY country_-id

HAVING AVG(rating) > 3.0;

SUBQUERIES

A subquery is a query that is nested inside another query, or inside another subquery.
There are different types of subqueries.

SINGLE VALUE

The simplest subquery returns exactly one column and exactly one row. It can be used
with comparison operators =, <, <=, >, or >=,
This query finds cities with the same rating as Paris:
SELECT name
FROM city
WHERE rating = (
SELECT rating
FROM city
WHERE name = 'Paris'

)3

SUBQUERIES

MULTIPLE VALUES

A subquery can also return multiple columns or multiple rows. Such subqueries can be
used with operators IN, EXISTS, ALL, or ANY.

This query finds cities in countries that have a population above 20M:
SELECT name

FROM city
WHERE country_id IN (

SELECT country_id

FROM country

WHERE population > 20000000
)3

SUBQUERIES

CORRELATED

A correlated subquery refers to the tables introduced in the outer query. A correlated
subquery depends on the outer query. It cannot be run independently from the outer
query.
This query finds cities with a population greater than the average population in the
country:
SELECT *
FROM city main_city
WHERE population > (

SELECT AVG(population)

FROM city average_city

WHERE average_city.country_id = main_city.country_1id

)3

SUBQUERIES

This query finds countries that have at least one city:
SELECT name

FROM country
WHERE EXISTS (

SELECT *

FROM city

WHERE country_id = country.id
)3

SET OPERATIONS

Set operations are used to combine the results of two or more queries into a single result.
The combined queries must return the same number of columns and compatible data
types. The names of the corresponding columns can be different.

CYCLING SKATING
id name country id name country
1 YK DE 1 YK DE
2 ZG DE 2 DF DE
3 WT PL 3 AK PL

. e LI

SET OPERATIONS

UNION

UNION combines the results of two result sets and removes duplicates. UNION ALL
doesn't remove duplicate rows.

This query displays German cyclists together with German skaters:
SELECT name

FROM cycling

WHERE country = 'DE'

UNION / UNION ALL

SELECT name

FROM skating

WHERE country = 'DE';

SET OPERATIONS

INTERSECT
INTERSECT returns only rows that appear in both result sets.

This query displays German cyclists who are also German skaters at the same time:
SELECT name

FROM cycling

WHERE country = 'DE'

INTERSECT
SELECT name
FROM skating
WHERE country

'DEI;

SET OPERATIONS

EXCEPT

EXCEPT returns only the rows that appear in the first result set but do not appear in the
second result set.

This query displays German cyclists unless they are also German skaters at the same
time:

SELECT name

FROM cycling

WHERE country = 'DE'

EXCEPT / MINUS

SELECT name

FROM skating

WHERE country = 'DE';

Command

SELECT

INSERT

UPDATE

DELETE

Description

The SELECT command retrieves
data from a database.

The INSERT command adds new
records to a table.

The UPDATE command is used
to modify existing records in a
table.

The DELETE command removes
records from a table.

Syntax

SELECT columnl, column2 FROM
table_name;

INSERT INTO table_name
(columnl, column2) VALUES
(valuel, value2);

UPDATE table_name SET columnl
= valuel, column2 = value2
WHERE condition;

DELETE FROM table_name WHERE
condition;

Data Manipulation Language (DML)
Commands

Example

SELECT first_name, last_name
FROM customers;

INSERT INTO customers
(first_name, last_name)
VALUES ('Mary', 'Doe');

UPDATE employees SET
employee_name = ‘John Doe’,
department = ‘Marketing’;

DELETE FROM employees WHERE
employee_name = ‘John Doe’;

Data Definition Language (DDL)

Command

CREATE

TRUNCATE

Description

The CREATE command creates a
new database and objects, such
as a table, index, view, or stored

procedure.

The ALTER command adds,
deletes, or modifies columns in
an existing table.

The DROP command is used to
drop an existing table in a
database.

The TRUNCATE command is
used to delete the data inside a
table, but not the table itself.

Syntax
CREATE TABLE table_name

(columnl datatypel,
column2 datatype2, ...);

ALTER TABLE table_name
ADD column_name datatype;

DROP TABLE table_name;

TRUNCATE TABLE
table_name;

Commands

Example

CREATE TABLE employees (

employee_id INT
PRIMARY KEY,

first_name
VARCHAR(50),

last_name
VARCHAR(50),

age INT
)i

ALTER TABLE customers ADD
email VARCHAR(100);

DROP TABLE customers;

TRUNCATE TABLE customers;

OPTIMISATION

When you want to optimize your queries, YOU SHOULD ALWAYS MEASURE BEFORE OPTIMIZE !!

To measure, you can use the EXPLAIN COMMAND. This command is place before anything else in the

query
o Example : EXPLAIN SELECT * FROM city; #ADD EXAMPLE

To optimize your query reading, you can use INDEX.
o | letyou play with generative Al and internet to figure out more. Don'’t hesitate to share what you’ve found with me.

03

Normal forms

What are normal forms ?

Normal forms are groups of rules that assess how “good” a database model is
> A '"good" modelis a model that features no redundancy and whose very design limits the risk of
data inconsistency to a minimum

There exists plenty of normal forms (at least TNF, 2NF, ..., 6NF, EKNF, BCNF, DKNF), but in

practice the first 3 are considered
> The first 3 normal forms are noted 1NF, 2NF and 3NF; they apply to individual relations. We say a data
model is in 3NF if all its relations are in 3NF
> They are refinements of each other: 3NF compliance implies 2NF compliance, which in tfurn implies
INF
> A model as a whole can be a mix of several normal forms

As database designers, we want to achieve 3NF in all our PDMs

Normal forms apply to the way a model is designed. Assessing the data stored in a database is not

enough fo claim that the model is in XNF — some flaws may be hidden because the data we see
doesn’t show corner cases.

TINF AKA 1st Normal Form

o Arelationisin 1NF if the domain of all its attributes is atomic, i.e. is not repetitive and not

compound
Blatant work around the
lack of collections in the
124 JohnDoe [34 Horseradish Ave @ NY] Petonaiione Bl
inconsistencies if a bug
. [12 Maniac Bvd @ Seattle; 1 Torvalds writes a string in a
125 Mary Smith Avenue @ Boston; 384 Bull Bvd @ NY] different format.
A step towards
normalization
124 John Doe 1 34 Horseradish Ave NY
125 Mary Smith 1 12 Maniac Bvd Seattle
125 Mary Smith 2 1 Torvalds Avenue Boston
(We could go further by
125 Mary Smith 3 384 Bull Bvd NY splitting customer_address

into finer components)

2NF AKA 2nd Normal Form

o Arelationisin 2NF if it is in TNF and if no non-key attribute depends on a subset of a key

Here name depends on

124 John Doe 1 34 Horseradish Ave NV customer_id, which is
a subset of the key
125 Mary Smith 1 12 wiaiau LVU Seatue (customer_id,
) customer_address).
125 Mary Smith 2 1 Torvalds Avenue Boston There is a risk of having
125 Mary Smith 3 384 Bull Bvd NY Hifeient names todthe
same customer_id

A step towards

normalization
124 John Doe € 124 1 34 Horseradish Ave NY
125 Mary Smith = FXb— 125 1 12 Maniac Bvd Seattle

125 2 1 Torvalds Avenue Boston

125 3 384 Bull Bvd NY

3NF AKA 3rd Normal Form

o Arelationisin 3NF if it is in 2NF and if no non-key attribute depends on another non-key
afttribute

car_brand depends on

1 205 GTI Peugeot car_model
2 Megane Renault
3 Clio Renault
4 Yaris Toyota
‘A step towards
normalization
1 205 GTI 205 GTI Peugeot
2 Megane i > Megane Renault
3 Clio Clio Renault
4 Yaris Yaris Toyota

04

Modeling patterns

More patterns

o The following slides describe useful patterns that are frequently encountered. Some are
valid only in the context of a relational data model, others can be used in virtually any
context

o Data governance: related to the life cycle of data
> Record history (aka versioning)
> Audit trail
> Soft delete
> Evolutionary Database Design

o Development: technical patterns that implement useful functionality
> Key/value stores
> Application lock
> Generdlisation

o Data warehousing & BIl: designed specifically for OLAP workloads
> Star, snowflake and constellation schemas
> Denormalization

Data Governance

Record history (aka Versioning)

o Problem

> We want to be able to “go back in time" and fetch an old version of a record from a table .i.e. we want to keep an
history of records as they are modified by users

o Solution
> The primary key of the relation is augmented with a monotonous attribute, the version number of the record (it may be
unique for a given entity, or for all entities)

> Two attributes give the validity dates of a record(start and end date/times). A NULL end date means this is the current
version (maximum version number)

> To go backin time, we just add a criterion to our queries: the target date must be between the start and end dates of the
entity we are querying

o Gotchas
> When a group of entities must be historized together, don't forget the association tables (N-M relations)!

124 1 John Doe 34 Horseradish Ave 2010-01-01 NULL
125 1 Mary Smith 12 Maniac Bvd 2013-02-03 2013-03-08
125 2 Mary Smith 1 Torvalds Avenue 2013-03-08 2013-09-18
125 3 Mary Smith 384 Bull Bvd 2013-09-18 NULL

Data Governance

Audit trail (very, very common)

o Problem
> The application lets user modify data at will, and we want to keep track of who made what (to prevent fraud, or in case
we are audited by an institution)
o Solution
> Several attributes are added to the table; typically they tell who created the record and when, and who modified it for
the last time and when (a NULL modification user & date means the record was never touched)
> If more precision is required, we can also create a specific table aside, storing the history of all modifications, like a log
o Gotchas

> Of course that is not enough to grasp the full behaviour of our users, application logs are also necessary

124 John Doe user1234 2010-01-01 NULL NULL
125 Mary Smith ~ user9877 2013-02-03 user9877 2013-04-01
125 Mary Smith user1039 2013-03-08 user1234 2013-09-28
125 Mary Smith user1234 2013-09-18 user9877 2013-09-19
customer name John Dof John Doe user1234 2013-09-19
.0r ... user last_name Dof Doe user1234 2013-09-19

product provider_id 1234 713 user9877 2013-09-28

Data Governance

Soft delete
o Problem

> Sometimes, we don’t want to delete a record forever from the database. Maybe by law we are not allowed to do so, or
maybe it holds important information that must not disappear info the void, maybe we want to be able to undo the
deletion later...

> Example: a table with users. User logins appear in many other tables following our super-useful audit trail pattern, but the
login information alone is not enough: we must keep all the information related to every use, in the USERS table

e Solution

> An attribute is added to the table; it's a flag telling whether the record was “deleted” (actually it

> never gets deleted)

> Queries that don't want to see the “deleted"” records add a criterion on that flag

>

If the table is already historized (see above), we can also use the end date as a flag(remember, it's NULL for the current
record. If there is no record with a NULL end date, then it's not valid anymore)

124 John Doe 34 Horseradish Ave N
125 Abdel Eted 12 Maniac Bvd
126 Mary Smith 1 Torvalds Avenue N

<

Data Governance

Evolutionary database design

©

(0]

Problem
We want to trace our database schema evolution

We want to automate our schema modification in our delivery process
Solution
Add a table schema version with record for every changeset before their application
Check before you apply your changeset :

>
>

>
>

>
>

—p

*® arecord with your script name does not exists
+ arecord is not marked as failure

Apply your change in a fransaction
Set the success flag at True, and commit the transaction

version script Install by Installedon success
124 T20150925_1800__ create_table.sql user 2016-10-03 TRUE
125 T20150925_1900__import.sql user 2016-10-03 TRUE
126

Tools as FlywayDb, Liquibase, DoctrineMigration, Active Record Migration implements this pattern and
give access to command to manage your Database Lifecycle in your software factory

Development

Key / values stores
o Problem
> We have objects that are too versatile to fit in the rigidity of the Relational model. Stil we need to use a relational DBMS
(RDBMS)

e Solution
> Simulate a NoSQL store, by designing a table that has only 2 atftributes: a key and an opaque value (a long character

string or a BLOB)
> Note that the table is not even in1NF...

o Gotchas
> It's difficult (and not efficient) to query the data with a criterion that refers to the contents of the BLOB. For this purpose

we'd rather use a NoSQL store (but sometimes we don’t have a choice =)
> Similarly, updates to a particular sub-field inside a BLOB require fetching and updating the whole BLOB at once, this is

coarse and not efficient when the objects are big

124 <product><name>Computer</name><features><cpu>...</features></product>
125 <product><name>Blender</name><features><rpm>...</features></product>

Development
Application Lock

o Problem

> We want to prevent 2 users from modifying the same record at the same time, otherwise they will overwrite each other’s
modifications. More specifically, we want to notify users when they are trying to modify a record that someone else is
already modifying, displaying the name of the other person
+ DBMS transactions don't allow us to do that, they're too technical. Besides, we don't want to mess with fransaction boundaries
o Solution

> Add a couple of attributes to the table, stating who opened (locked) the record and when

> The locking date and time is necessary because sometimes users will forget to close a screen; or the application will crash,
leaving the lock set. With the date and time of locking we can set an expiration policy on the lock

> When the modification is done, release the lock by setting those fields to NULL

124 John Doe 34 Horseradish Ave user1234 14:31:02
125 Abdel Eted 12 Maniac Bvd user9877 14:54:03
126 Mary Smith 1 Torvalds Avenue NULL NULL

Development
Generalization
o Generdlization is a concept specific to object-oriented programming, and thus in our case

to the UML class diagram
e Thereis no such concept in the relational model but we can simulate it

Development

Generalization

o Generdlization pattern #1: one single relation, with NULLable attributes comresponding to all

possible subclasses
> Cumbersome when there is a large number of subclasses or when they have many attributes
> Changing one subclasse or adding a new one changes all the schema (and it's hard to keep
columns of a table grouped together, new ones are added to the end!)
> Leads to lots of NULL values in actual data because objects are instances of a single class. Attributes
corresponding to the same subclass must be all NULL or non-NULL: risk on data quality

MAIN_COURSE

course_name VARCHAR (30)

unit_price INTEGER

esc_meat_kind VARCHAR (20)

Escalope area - esc_has_crust CHAR(1)
esc_cookedness INTEGER

piz_topping VARCHAR (30)

Original pizza area < | P1Z_cheesy crust CHAR(1)
piz_is_veggie CHAR (1)

pst _pasta_kind VARCHAR (30)

Pastaarea | WEEREERE. VARCHAR (30)

Belongs to pizzas but was added lately piz_spicyness INTEGER

Development

Generalization

o Generdlization pattern #2: one relation per subclass (+1 for the parent class if it's not

abstract), with the parent’s attributes repeated in each relation

> Cumbersome when there is a large number of common attributes, changing the parent class implies
modifying the schema of all subclasses. But each subclass can change without affecting the others

> No implicit (and error-prone) rule involving NULL values to discriminate records between subclasses

> The parent class’s identifier should be unique across all child relations, but the Relational model can’t
express such a constraint involving multiple relations

> Searching for an object without knowing its concrete type in advance implies looking up every
subclass relation, one by one

> The parent-child class relationships is not explicit in the PDM - all relations are totally independent

ESCALOPE PIZZA PASTA
course_name VARCHAR(30) course_name VARCHAR (30) course_name VARCHAR (30)
unit_price INTEGER unit_price INTEGER unit_price INTEGER
meat_kind VARCHAR (20) topping VARCHAR (30) pasta_kind VARCHAR (30)
has_crust CHAR(1) cheesy_crust CHAR(1) sauce VARCHAR (30)
cookedness INTEGER is_veggie CHAR(1)

spicyness INTEGER

Development

Generalization

o Generdlization pattern #3: one relation per subclass + 1 for the parent class (be it abstract or not),
with the parent’s attributes factored in the parent relation, and foreign keys between the children

and the parent

>

>
>
>

\

No collateral damage when any of the classes (parent or child) changes

No waste of space even if the parent class has many attributes

No implicit (and error-prone) rule involving NULL values to discriminate records between subclasses

Searching for an object without knowing its concrete type in advance implies looking up the parent and all the
children, with a bunch of (possibly slow) outer joins

The parent-child class relationships is explicit in the PDM, thanks to the foreign keys

Unicity of the parent identifier is guaranteed because it becomes the primary key of the parent relation

MAIN_COURSE
| course_name VARCHAR(30) |

<

FK_ESC_MAIN [ugit_price RS FK_PST_MAIN
|—T FK_PIZ_MIN
\ ESCALOPE PIZZA \ PASTA
course_name VARCHAR(30) course_name VARCHAR (30) course_name VARCHAR (30)
meat_kind VARCHAR (20) topping VARCHAR (30) pasta_kind VARCHAR (30)
has_crust CHAR(1) cheesy_crust CHAR(1) sauce VARCHAR (30)
| cookedness INTEGER | is_veggie CHAR(1) :

spicyness INTEGER

Data warehousing & Bl
Star, snowflake and constellation schema

o Problem

> Data models designed for OLTP workloads are difficult to query in OLAP scenarios, the queries are slow

because they involve a lot of complicated joins. Every fime a new report must be produced, a specific query
has to be designed

o Solution

> Provide an alternative database schema for reporting. A common choice is the star / snowflaoke schema,
where a central subject table (the fact table), holding numeric measures, is surrounded by smaller satellites
tables (the dimension tables) that are the analysis criteria, giving way to multidimensional analysis

> There can be as many stars or snowflakes as there are subjects of study in the data warehouse/data mart

> The number of joins is limited by the depth of the tree. Dimensions that are not needed for a specific report are
not queried and thus don’t need a costly join

> New reports can be created at will by enumerating the dimension tables. The schema is easy to understand
and allows discovery of the business domain

e Variations
> Astar has one fact table and N dimension tables, the depth of the tree is 1
> A snowflake has one fact table and N dimension tables of arbitrary depth (hierarchies)
> A constellation is a collection of stars / snowflakes where the dimensions are shared between fact tables

Data warehousing & Bl

Example of a star schema

CALENDAR
EMPEOXEE id INTEGER
id INTEGER day INTEGER
name VARCHAR (40) month INTEGER
dept_name VARCHAR(40) Fact table year INTEGER
salary NUMERIC(10) is_holiday CHAR (1)
. 4 A
SALES

employee_id INTEGER

-customer_id INTEGER

Dimension & === | it id INTEGER

dimension table sales date id INTEGER

raw_amount NUMERIC(10)

tax_amount NUMERIC(10)

commission_amount NUMERIC(10)

\ 4
CUSTOMER Measures; we can perform v
id INTEGER aggregations on them PRODUCT

namg VARCHAR (40) id INTEGER
region VARCHAR (40) name VARCHAR (40)
address VARCHAR (200) unit_price NUMERIC(10)
provider_name VARCHAR(60)

Data warehousing & Bl

Example of a snowflake schema

CALENDAR
[> DEPARTMENT id INTEGER
id INTEGER day INTEGER
EHREOYEE name VARCHAR (40) month INTEGER
id INTEGER year INTEGER
name VARCHAR (40) is_holiday CHAR(1)
dept_id INTEGER s
salary NUMERIC(10)
4 SALES
employee_id INTEGER
customer_id INTEGER
product_id INTEGER
sales_date_id INTEGER
raw_amount NUMERIC(10)
v tax_amount NUMERIC(10)
CUSTOMER commission_amount NUMERIC(10)
\ 4
1d INTEGER PRODUCT
name VARCHAR (40)
region_id INTEGER id INTEGER
address VARCHAR(200) name VARCHAR (40)
unit_price NUMERIC(10)
\ 4 provider_id INTEGER
REGION PROVIDER
id INTEGER id INTEGER
name VARCHAR(40) name VARCHAR(60)

Data warehousing & Bl

Denormalization

o Problem

> 3NFis necessary to guarantee data consistency, but it leads to lots of tables linked together by foreign keys. As
a consequence, is some situations queries are complicated and slow because they involve a lot of joins

o Solution

> Abandon 3NF and 2NF by merging tables together (ONF does not help performance and is more related to the
key/value store pattern above)

e Variations

> This is an optimization strategy and, as such, it is a tfrade-off between performance and consistency. It should
be followed in specific cases where other optimization methods (indices, partitioning, ...) have failed

> Denormalization should never be the default choice in a relational context + In NoSQL we are more or less
forced to denormalize

124 John Doe 1 34 Horseradish Ave NY
125 Mary Smith 1 12 Maniac Bvd Seattle
125 Mary Smith 2 1 Torvalds Avenue Boston

125 Mary Smith 3 384 Bull Bvd NY

DOJO

Sujet

1. Design SQL requests for each question in pgAdmin
2. Implement these requests in the python backend

THE END

