
databases, data 
engineering & big data

SQL, set up env and practical work

ESME SUDRIA

Luc Marchand - luc.marchand.pro@proton.me 
Maxence Talon - maxencetallon@gmail.com

mailto:luc.marchand.pro@proton.me
mailto:maxence.tallon@gmail.com


Global Syllabus

01

02

03

04

05

06

07

08

Introduction and main 
concepts

SQL, set up env and 
practical work

NoSQL world

Introduction to Big Data 
& Data Engineering

Kafka & event driven 
architectures

Spark & Delta 

Warehouse, DBT & BI

IA - MLOps & RAG



Course syllabus

01

02

03

04

Programming 
Environment

Structured Query 
Language (SQL)

Normal forms

Modeling Patterns



Programming 
Environment

01



Overview
● Programming environments, in this context, are the various ways and paradigms with 

which a client application can interact with a DBMS
● They have been evolving regularly for the last decades, giving way to more and more 

flexibility and functionality



Embedded SQL
● With the Embedded SQL pattern, a macro language lets one intersperse SQL statements within a 

regular program (in C, in Java, ...)

● A pre-processing step, before compilation, translates those the macros to accesses to the database

● This was encountered in the early days of database programming, but is now superseded by the other 
approaches

● So, that’s all for embedded SQL



Shell & command-line interface (CLI)
● These are the tools made available by DBMS vendors or third-party organizations, to run queries against 

interactively against a database

● Graphical tools can be used to
○ Explore the structure and the contents of a database
○ Try and refine queries before implementing them for good in an application (trial & error)
○ Administer the database
○ Examples: Oracle SQL Developer (generic), SQuirreL SQL Client (generic), Microsoft SQL Server, Management Studio 

(proprietary)

● Command-line tools can also meet this purpose; in addition they are used to
○ Run pre-made complex scripts, for example data migration scripts
○ Perform regular operations on a database, when run from a scheduler
○ Examples: psql, mysql shell, mysqldump, mongodb shell, ...



Stored procedures & triggers
● Stored procedures are functions written in a superset of SQL, that execute directly on the DBMS where the data resides

○ They appear as objects in the catalog of the DBMS

● Triggers are special procedures that are run by the DBMS upon data modification
○ Example with audit trail: every time a customer’s address is modified, log the modification into a table

● Stored procedures and triggers feature constructs belonging to imperative programming (local variables, branches, loops, ...), 
which are absent from standard SQL

○ The language is usually proprietary to the DBMS vendor – a standard (SQL3) was once proposed but was never adopted

● When to use them? Usually it’s best to have all the business logic in one place, i.e. in the application code (Java, C#, ...), not in 
the database

○ Stored procedures are useful when they bring a significant performance boost (there is virtually no network traffic involved since the code 
runs on the DBMS)

○ Triggers are useful when an action must absolutely be triggered, whatever the means of modification, e.g. in strong regulatory contexts. 
Application code cannot catch direct modifications by a rogue DBA tampering with the data directly, a trigger can



Client drivers
● Client drivers are APIs used by application code to talk to a DBMS, usually over the network. They let 

developers write code that emits queries, browses the results, queries the catalog, …
○ Queries are dynamic, they can be constructed piece by piece by the program

● All client drivers revolve around the concepts of Connection, Statement and ResultSet (also called 
Cursor)

● There are two types of drivers
○ Native clients, provided by the DBMS vendor, which expose their own API with possible specific extensions, in the 

target language
○ Middlewares such as JDBC, ODBC or ADO.NET to name a few, which expose a standard API and delegate work to 

a proprietary client hidden to the developer
■ The abstraction from the DBMS is useful in some contexts: it allows one to have different DBMSes for 

development and production, for example
■ This option is almost only valid for relational DBMSes



Object - Relational Mapping (ORM)
● Object-Relational Mapping is a technique that bridges the gap between 

object-oriented programming and the relational model
● More specifically, it adds metadata to the class definitions; the metadata tells the ORM 

layer:
○ What table and what fields in it persist instances of a given class (i.e. entities)
○ What integrity constraints must be enforced by the database
○ How relationships between classes must be handled (foreign key reference, association table, 

inheritance pattern, ...)
○ Where transaction boundaries are with respect to business logic methods (aka services)

● ORM also offer several variations on query languages, for easy retrieving and updating 
of objects

● There is no global standard, but in the Java world the ORMs comply to the JPA (Java 
Persistence API) standards, also called EJB3
○ The most common JPA implementation is Hibernate
○ JPA is not limited to relational databases and thus to ORMs
○ JS: Sequelize / Python: SQLalchemy



What more ? NoSQL
● NoSQL (“Not Only SQL”), as we will see in the next module, is a different world 

altogether

● NoSQL DBMSes, just like relational ones, come with their specific client drivers, and 
sometimes with more generic API adaptors like JPA
○ For some NoSQL databases, object-to-object mapping is trivial

● While proprietary APIs are sometimes limited by the modelization and capabilities (a 
non transactional key/value store offers no more that get() and put() methods), the 
flexibility comes from the broad choice of modelization and architectures that we get
○ Until recently, the approach was: Given a RDBMS imposed upon us, what API will be most 

productive for our project?
○ Today, the approach is: Given our technical and functional requirements, what type of database 

(or combination thereof) is most tailored to suit the needs?



Structured Query 
Language (SQL)

02



History
● SQL (Structured Query Language) is language meant to implement tasks that are specific to 

relational databases
○ Some NoSQL DBMSes offer an SQL abstraction over their modelization

● It is actually a legacy of standards that, in theory, allow to change DBMS without changing 
the code that accesses the database

● In practice, most DBMSes more or less conform to the SQL-92 standard; more advanced 
features are usually present but with a proprietary syntax, inherited from what was once 
extensions to the norm
○ Other significant differences lie in data type names, function names, and syntax for procedural SQL 

(stored procedures and triggers)
○ Porting existing code from one DBMS to another is difficult (a bit easier with an ORM)

● The rest of this document will be written with the Postgresql syntax and dialect



Data Types

Cf postgres documentation

https://www.postgresql.org/docs/current/datatype.html

https://www.postgresql.org/docs/current/datatype.html


3-state logic
● Predicates (boolean formulas) are omnipresent in SQL, in WHERE clauses and on join 

conditions 
○ Example: amount > 100 AND client.client_id = order.client_id

● Care must be taken when values involved in a predicate can take the NULL value: a 
condition involving NULL evaluates to the special boolean value UNKNOWN, and any 
combination of predicates involving UNKNOWN evaluates to UNKNOWN as well. 
UNKNOWN is neither true nor false!

● Example

○ select * from order where order_date = ’2013-07-08’ gives order no. 124, as expected
○ select * from order where order_date <> ’2013-07-08’ gives nothing!



Several languages in one



Cheatsheet SQL

02.1



SAMPLE DATA



QUERYING SINGLE TABLE

#DML



ALIASES



FILTERING THE OUTPUT



FILTERING THE OUTPUT



FILTERING THE OUTPUT



QUERYING MULTIPLE TABLES



QUERYING MULTIPLE TABLES



QUERYING MULTIPLE TABLES



QUERYING MULTIPLE TABLES



QUERYING MULTIPLE TABLES



QUERYING MULTIPLE TABLES



CHEATSHEET JOIN



AGGREGATION AND GROUPING



AGGREGATION AND GROUPING



AGGREGATION AND GROUPING



AGGREGATION AND GROUPING



SUBQUERIES



SUBQUERIES



SUBQUERIES



SUBQUERIES



SET OPERATIONS



SET OPERATIONS



SET OPERATIONS



SET OPERATIONS



Data Manipulation Language (DML) 
Commands



Data Definition Language (DDL) Commands



OPTIMISATION

● When you want to optimize your queries, YOU SHOULD ALWAYS MEASURE BEFORE OPTIMIZE !! 

● To measure, you can use the EXPLAIN COMMAND. This command is place before anything else in the 
query
○ Example : EXPLAIN SELECT * FROM city; #ADD EXAMPLE

● To optimize your query reading, you can use INDEX. 
○ I let you play with generative AI and internet to figure out more. Don’t hesitate to share what you’ve found with me.



Normal forms

03



What are normal forms ? 



1NF AKA 1st Normal Form



2NF AKA 2nd Normal Form



3NF AKA 3rd Normal Form



Modeling patterns

04

































DOJO



Sujet

1. Design SQL requests for each question in pgAdmin
2. Implement these requests in the python backend



THE END
See you next week ;-)


