
databases, data
engineering & big data

Introduction and main concepts

ESME SUDRIA

Luc Marchand - luc.marchand.pro@proton.me
Maxence Talon - maxencetallon@gmail.com

mailto:luc.marchand.pro@proton.me
mailto:maxence.tallon@gmail.com

About me

Data Engineer / Backend Developer Consultant @ LUXCORP / HYPERCHANGE

luc.marchand.pro@proton.me

● 6 years at Octo Technology
● Work independently now
● 5th year as a teacher at ESME
● Main topics of interests

○ Kafka & streaming world
○ data engineering & backend programming
○ Best practices / Software craftsmanship
○ drums & music

If you have any question, feel free to drop me a mail at any time

mailto:luc.marchand.pro@proton.me

Course Methodology

● This course features academic lectures and a long and modular practical work
○ All the practical works will be graded and the final course is a practical work as a final exam

● Academic lectures closely follow the course material
○ Questions are welcome throughout, do not hesitate to interrupt !
○ Course material is allowed during the exam and the practical exam
○ You you can use generative AI to help you

● Practical work will occur on the second part of the course
○ The context will be the same through all the practical work sessions
○ The idea is to show you a (kind of) real architecture to allow you to understand all the parts of

a data architecture
● In the real worl, when you work as an IT / data engineer, there is no real exam but

team work and sometimes dojos.
● All the course will use some specific technologies as practical examples but we will

introduce you each concept and key points

Quick poll

Who has ever worked with databases before ?

Which technology ?

Where can I get this support ?
You’ll find the support on http://databases.esme.s3-website.eu-west-3.amazonaws.com

TPs & TDs will also be available there as well as their answers

http://databases.esme.s3-website.eu-west-3.amazonaws.com

Global Syllabus

01

02

03

04

05

06

07

08

Introduction and main
concepts

SQL, set up env and
practical work

NoSQL world

Introduction to Big Data
& Data Engineering

Kafka & event driven
architectures

Spark & Delta

Warehouse, DBT & BI

IA - MLOps & RAG

Course syllabus

01

02

03

04

05

06

What is a database ?

History of databases

High level concepts

Who uses databases ?

DataBase Management
Systems (DBMSes)

Usage & architecture

What is a database ?

01

There are multiples definitions

An organized collection of data.The
data are typically organized to model
relevant aspects of reality in a way
that supports processes requiring this
Information
- Wikipedia

A structured collection of data that is
made accessible to a computer, in
order to satisfy several users
simultaneously in a timely fashion.
– Claude Delobel

A structured collection of data
that is accessible from several
users in a selective manner. A collection of data managed by

a DBMS and associated to a single
application.

A collection of data that
represents some objects from the
real world, and used as a support
to a computer application.
– Georges Gardarin

Our definition
● We adopt a more generic definition

● All the other aspects (storage medium, list of operations, concurrent access, existence of a
computer application, …) will depend on the context; most of them are under the responsibility
of a DataBase Management System (DBMS)
○ Examples of DBMSes : Oracle, MySQL, MongoDB, …
○ An operating system is also a kind of DBMS, through its filesystem APIs

A database is a collection of data that is accessible from a common
entry point

The French abbreviation for DBMS is SGBD (Système de Gestion de Bases de Données)

Databases history

02

Late 50s’, early 60’
In those days…

● Storage took place on magnetic tapes
● Data inpud used to be done with punch cards

Data was managed as files, with several limitations:

● Little flexibility in data structures
● Sequential access only (tapes)

○ Data had to be read or written in a predetermined order
● As a consequence, data was often redundant and inconsistent
● The applications had to take care of physical data access themselves
● No atomicity of data updates

○ Example: debit and credit of a same amount on two different accounts
● Simultaneous access by several users was hard to implement
● No security policy (access rights, confidentiality)

In those days…

● Hard disks allowed direct access to random pieces data - no more sequential access

The navitation models (network & hierarchical) were the most common ones

● Data navigation used abstractions such as “pointers” and “paths”

Limitations

● More complexity as the amount of data increases
○ Increase in the number of pointers
○ Possible redundancy (and thus inconsistency) with the hierarchical model

● No standard interface or language for defining and manipulating data
● Rigid data structures

○ Moving relationships around between entities was hard
○ The model was not fit for modelling many-to-many relationships

● Hence, complexity of developing applications on top of such databases
○ Besides, the access path the entities had to be coded into the applications

Late 60s’, early 70’

Several modern NoSQL databases feature network (graph) and hierarchical (document) models. Some limitations above still
apply - they are no more constraint brought by technology but are considered a trade-off for performance. Beside, rigidity is less
of an issue because many NoSQL DBMSes offer alternative access methods to pieces of data.

Database models from 1970s

 Hierarchical

● Only one owner per
record

● Information can have
a complex structure
(types, lists, nesting)

Network

● The consumer needs
to know the access
path

● e.g. relationship
between people to
model a social
network

Late 60s’, early 70s’ (cont’d)

● Edgar Franck and Ted Codd formalize the relational model
○ Ted Codd received the Turing Price in 1981 for his work

● Prototypes for relational DBMSes appear
○ System R at IBM
○ Ingres at UC Berkeley

● Pros of the relational model
○ Relational modelling is simple - everybody understands tables
○ SQL (Structured Query Language) allos one the query data without knowledge of its physical

layout on disk

Limitations

● Legibility: the simple model (“Everything is a table”), though versatile, makes some relationships less
apparent (e.g. hierarchies, inheritance)

● With the upcoming of object-oriented language, the “impedance mismatch” between the relational
and object models makes data mapping difficult

Example of a relational model

80s’

● Prototypes initiated in the 70s give way to commercial products : Oracle, Ingres,
Sybase, …
○ SQL is becoming an industry standard

● Beginning of parallel and distributed DBMSes

● Beginning of object-oriented DBMSes, with limited success
○ Main database vendors are reluctant to implement this new approach; the market sticks to the

relational model
○ Steep learning curve
○ Low performance of the implementations the available
○ Maintenance operations are slow
○ No standard, hence a strong dependency on the vendor APIs
○ The object-relational model, described later, proved simpler and more valuable
○ Today, ORM and NoSQL datastores are much more common

90s’

● Appearance of business intelligence and data mining applications
● Appearance of large data warehouses (several terabytes)
● Emergence of the e-commerce industry
● Appearance of the object-relational model, to overcome some limitations of the

relational model

Such limitations are :

○ Lack of pointers easing navigation in the model
○ Lack of complex types (user data structures, collections, inheritance, …)
○ Lack of operations built into the model (i.e. methods)

The object-relational model (OR model) is not to be confused with object-relational mapping (ORM)! Despite the
limitations overcome by the OR model, the relational model is still widely used today. The ORM offer an alternative
workaround to those limitations, and addresses them in the application layer – not in the data layer as the OR model
would do.

2000s’

● Database administration is more and more automated

● XML and related standards (XQuery…) are thriving : XML database appear

● But XML databases never really made it
○ Most relational databases now feature XML extensions,
○ When needed, XML is usually stored in the database as raw text or BLOBs

Late 2000s’, 2010s’

● E-commerce, social media and online advertising are thriving : Amazon, Google, e-Bay,
Yahoo!, Facebook, Twitter, …

● For those “Internet giants”, the relational model is completely unable to handle their traffic
and the volume of data they generate - performance is a crucial issue directly linked to their
revenue

In 2006, Facebook has deployed a click stream monitoring, how much data do they get in one day ?

● NoSQL datastores appear in those years, as alternatives to traditional (relational)
DBMSes

● Emergence of Big Data
○ Today’s drivers for Big data: social networks, personalized experience, M2M

(Machine-to-Machine traffic), IoT (internet of Things)

Relational databases are still widely used today and won’t disappear anytime soon.
The mentality has shifted from “one size [relational] fits all” to “the right tool for the job”

2015 - 2017

● We see new storage patterns like the blockchain
○ The storage is massively distributed with distributed consensus

● NoSQL databases market is growing and there is a professional supports assured bu
an editor behind every NoSQL systems (MongoDB, Cassandra, …)

● Data Lake pattern appears and become a trend, at company scale
● The DMBSes are commodities. We don’t look anymore as strategic assets.

We see a change in the mindset of companies. Board directories see the IS as a new vehicle for value
creation. The mentality has shifted from “cost reduction at every level” to “investment in

innovation and new usages”. We talk about digitalization.

Example of NoSQL data models

2017-2020

● DistributedSQL databases make their apparition

● The return of data warehouses despites hype around data lake pattern.

● Event driven architectures make their appearance
○ Confluent Kafka is one of the event architecture drivers

● Cloud computing is rising up. Move to cloud strategies are settled by companies to
accelerate.

https://www.confluent.io/lp/confluent-kafka/?utm_medium=sem&utm_source=google&utm_campaign=ch.sem_br.brand_tp.prs_tgt.confluent-brand_mt.xct_rgn.emea_lng.eng_dv.all_con.confluent-general&utm_term=confluent&creative=&device=c&placement=&gad_source=1&gclid=Cj0KCQjwpP63BhDYARIsAOQkATbqsr_ifS27Wg3Cfkwk3Tv6HbiqeKR_xilGdolPVu9sdWEUUoNMWrQaAohZEALw_wcB
https://blog.octo.com/compte-rendu-matinale-accelerate-la-vitesse-conditionne-lexcellence-un-nouveau-paradigme-dans-le-developpement-logiciel

2020 - now

● MLOps patterns become trendy
○ In fact, 80% of data science projects never go to production

● databases-as-a-service (dbaas) services help a lot to create and manage multiple
kinds of databases. They are a de facto standard to deploy and use databases.

● Modern SQL PRQL

● LLM and generative AI solutions arrive close to the developers
○ Github Copilot, Jetbrains AI, Cursor, ChatGPT, …

https://ml-ops.org/

To keep in mind

High-level concept

03

Structuration of data
Data comes in 3 flavors : structured, semi-structured and unstructured.

Schema

● A schema is an invariant on the data managed by a system : it imposes constraints on the data.
○ A fixed number of types (usually of entities manipulated in the business domain)

■ Car - Road - Driver
○ A fixed set of attributes for each type

■ Car: brand, color, wheels, licence plate #, owner
■ Road : name, GPS positions, traffic condition
■ Driver : identity, licence #, cars owned

○ Additional constraints that apply to entities, attributes and their relationships
■ The driver must be 18 years old
■ Driver’s licence # is mandatory
■ A car is owned by 0, 1 or 2 drivers

Data quality

● We have seen that only structured data and (to a lesser extent) semi-structured data have a schema
that constrains their contents

● Even the most elaborate schema is designed and precise, it’s a technical vision of how the data should
conform : it cannot capture all the business constraints and processes that rely on good quality of data

● Data quality is the sum of 3 correlated concepts :
○ An objective measurement of compliance made on actual data and relying on schema and additional rules as

■ Completeness of data
■ Integrity checks + …

○ A process where the above measurement is made on a regular basis, with corrective measures taken by designated
“data owners”

○ A set of (usually expensive) tools implementing the process and measurements
● Data quality problems always happen but they are normally not a huge deal

○ Some exceptions : very bad quality, final reporting (data warehouse), regulatory and compliance reporting,
customer relationship management, and… open data :)

Functional dependency

● In relational database theory, a functional dependency is a constraint between two or more columns in a table
● As a database designer, you have to identify the functional dependencies in your database schema to avoid

data duplication. It’s a basis for the database design rules called normal form.
● Normalization aims to free the database from update, insertion and deletion anomalies

name → birth_date, address
festival → festival_address

Entities, keys and identifiers

● Example: a database is used to store employees’ characteristics
○ Their first and last names
○ Their birth date
○ Their social security number
○ Their salary, and so on

● We want to be able to create new records for new employees, to update a person’s record upon modification
(e.g. a raise), or to remove it if they leave the company

Entities, keys and identifiers (cont’d)

● In many cases, the data stored represents objects from the real world
○ There are exceptions: e.g. logs dumped for future analysis

● Those “real” objects are called entities – entities usually have a type
○ Example: “John Doe” is an entity of type “Person”

● In order to be retrieved and manipulated, each entity must be distinguished from the other entities stored
alongside it. For this purpose, one of several attributes of the entity must be unique across all entities of the
same type in the database: those attributes are called keys

● Among all the possible keys, one of them is usually chosen as “the” identifier. It is often called the primary
key
○ Example for structured data: the social security number of a person
○ Example for unstructured data: a file name, including full path (metadata)

● stability: once created, the primary key of an entity must never change, because programs or other data may
rely on it (cross-references...) !

Entities, keys and identifiers (cont’d)

● Sometimes, it is difficult to find a good primary key
○ Example: in some countries, the social security number cannot be stored in databases for privacy

concerns. A person’s name is not guaranteed to be unique or stable. Neither is the couple made from a
person’s name and their birth date

● In those cases, one can resort to use a unique, machine generated number as the primary key. This is often
called a surrogate key

Entities, keys and identifiers (cont’d)

CRUD Operations

● All databases provide a minimum set of elementary operations that can be performed on an entity
● This set of operations is called CRUD

● The CRUD operations at least identify entities by their primary key; some databases offer additional, more
flexible data access means
○ Example 1: raise all employees from the Sales department whose salary is below $2,000 and who have

been in the company for more than 3 years
○ Example 2: compute the sum of all salaries in the company, broken down by department

Transactions

● Suppose the marketing department is being merged with the sales department. We want to :
○ delete the no longer existing marketing dept
○ then change the department of all marketing people to sales

Transactions (cont’d)

● Step 1 : remove the marketing department from the database

Transactions (cont’d)

● Step 1 : remove the marketing department from the database
● Step 2 : move employee #78 to the sales dept

Transactions (cont’d)

● Step 1 : remove the marketing department from the database
● Step 2 : move employee #78 to the sales dept
● Step 3 : move employee #84 to the sales dept

○ The program crashes !

Transactions (cont’d)

● A transaction is a unit of work performed by a database. Data manipulation operations are said to be
“wrapped” in transactions
○ Every operation, including elementary CRUD, occurs inside a transaction, even if the programmer didn’t

ask one (those are implicit transactions)
○ The programmer can explicitly open and close transactions, if she wants to wrap several operations in a

single transaction

● With many DBMSes, especially the relational DBMSes, a
transaction respects the ACID properties
○ Beware ! Most NoSQL databases use other models !

Transactions (cont’d)

● When a transaction begins, it is said to be opened
● When it finishes successfully, it is said to be committed
● In contrary, in case of an error or a problem, it can be rolled back at any time during the course of its execution

○ To ensure atomicity, a rollback cancels all operations that were made by the transaction since its
beginning

● Opening, commit and rollback are make
○ by y the programmer, explicitly
○ by the DBMS, for implicit transactions or when it encounters an error like a technical failure or a

violation of the consistency property upon commit
■ Temporary violations are OK as long as they are cleaned before commit

Transactions (cont’d)

● Back to step 3 of our example, assuming we wrap our sequence in a transaction
○ After rollback, the database is left unchanged, ACID’s A and C properties are satisfied

To Keep in mind

Who use databases ?

04

People around databases

Database Management
System (or DBMS)

05

Summary

SHARING DATA CONSISTENCY & INTEGRITY

SERVICES TO THE CLIENT ANATOMY OF A DBMS

OF QUERIES AND HOW THEY
ARE HANDLED A LIST OF COMMON DBMSES

An analogy

Sharing data

Consistency & Integrity

Service to the clients

Anatomy of a DBMS

Queries and how they are handled
● Queries are the basic unit of communication between a database client and the DBMS.

Examples :
○ “Get the characteristics of employee whose ID# is 78”
○ “Raise all employees from the Sales department by 5%”
○ “Get the total sales for region ‘Europe’ that were closed during the last month but for which the

product wasn’t shipped yet 24 hours ago, except when the ‘Slow delivery’ option was chosen by the
customer. Group and sort figures by customers weight in decreasing order”

● When the DBMS receives a query, the following operations occur :
○ Analysis: the query is checked for validity. For text-based query languages (e.g. SQL), the text is

syntactically parsed. The result is checked against the catalog: are we querying objects that don’t
exist?

○ Control: security rules (if any) are applied
○ Optimizing: several execution paths are examined, and the “best” one chosen, according to some

criterion that depends on the DBMS
○ Execution: the query is finally executed, data is fetched and if requested, modified. Transactions are

committed or rolled back
○ Results: (execution status and possible data requested) are sent back to the client

Common DBMS

Usage and architecture

06

Summary

DATABASES AS A STORAGE
BACKEND FOR APP CLIENT-SERVER ARCHITECTURE

PRIMARY / SECONDARY
ARCHITECTURE 3-TIER ARCHITECTURE

DATA WAREHOUSES, DATA
MARTS

DATA HUB / DATA LAKE / LAKE
HOUSE

EMBEDDED DATABASE PEER-TO-PEER (P2P)
ARCHITECTURE

databases as a storage backend for an
application

databases as a storage backend for an
application (cont’d)

databases as a storage backend for an
application (cont’d)

databases as a storage backend for an
application (cont’d)

databases as a storage backend for an
application (cont’d)

databases as a storage backend for an
application (cont’d)

data warehouses & data marts

data warehouses & data marts (cont’d)
● Data warehouses and data marts serve two purposes

○ Concentrate all (most of) the data of an organization, produced by independent departments, in one
place

○ Give a single point of truth of the data, i.e., that data is clean, approved and shared across the
organization

● Those purpose ultimately satisfy the need to make strategic decisions based on complete and accurate data:
this is called Business Intelligence (BI)
○ In French: Décisionnel

● While a data warehouse contains “all” the data of the organization, smaller subsets specialized by domain
are sometimes extracted from it; they are called data marts

● The data in a data warehouse often comes from several OLTP databases. The data flows from source
applications to the data warehouse
○ Most of the time, data warehouses and data marts are refreshed on a daily, weekly, monthly... basis;

data is sometimes streamed but this is rare
○ Except for the unattended refresh process, the data is usually read-only, for reporting purposes

● Most of data warehouses and data marts are either relational databases, or specialized data structures
optimized for OLAP querying (e.g. cubes)
○ NoSQL in the common sense are still rarely seen as data warehouses, because reporting software

strongly rely on
● SQL for querying. This is changing as some NoSQL databases are beginning to support at least some subset

of SQL
○ For this reason, data warehouses rarely capture important unstructured data of an organization, e.g.

emails, documents, …

data warehouses & data marts (cont’d)

data hub & data lake

LakeHouse

To Keep in mind

DATABASES AS A STORAGE
BACKEND FOR APP

PRIMARY / SECONDARY
ARCHITECTURE

DATA WAREHOUSES, DATA
MARTS

DATA HUB / DATA LAKE / LAKE
HOUSE

EMBEDDED DATABASE

DOJO

THE END
See you next week ;-)

