databases, data
engineering & big data

Introduction and main concepts

mailto:luc.marchand.pro@proton.me
mailto:maxence.tallon@gmail.com

About me

Data Engineer / Backend Developer Consultant @ LUXCORP / HYPERCHANGE
luc.marchand.pro@proton.me

6 years at Octo Technology

Work independently now

5th year as a teacher at ESME

Main topics of interests

Kafka & streaming world

data engineering & backend programming

Best practices / Software craftsmanship
drums & music

e 6 o o
O

o O O

If you have any question, feel free to drop me a mail at any time

mailto:luc.marchand.pro@proton.me

Course Methodology

e This course features academic lectures and a long and modular practical work
o All the practical works will be graded and the final course is a practical work as a final exam
e Academic lectures closely follow the course material
o Questions are welcome throughout, do not hesitate to interrupt !
o Course material is allowed during the exam and the practical exam
o You you can use generative Al to help you
e Practical work will occur on the second part of the course
o The context will be the same through all the practical work sessions
o Theideais to show you a (kind of) real architecture to allow you to understand all the parts of
a data architecture
e Inthe real worl, when you work as an IT / data engineer, there is no real exam but
team work and sometimes dojos.
e All the course will use some specific technologies as practical examples but we will
introduce you each concept and key points

Quick poll

Who has ever worked with databases before ?

Which technology ?

Where can | get this support ?

You'll find the support on http://databases.esme.s3-website.eu-west-3.amazonaws.com

TPs & TDs will also be available there as well as their answers

http://databases.esme.s3-website.eu-west-3.amazonaws.com

Global Syllabus

Introduction and main Kafka & event driven
concepts architectures

SQL, set up env and

practical work Spark & Delta

NoSQL world Warehouse, DBT & Bl

Introduction to Big Data

& Data Engineering IA - MLOps & RAG

Course syllabus

What is a database ? Who uses databases ?

DataBase Management

History of databases Systems (DBMSes)

High level concepts Usage & architecture

01

What is a database ?

There are multiples definitions

A collection of data that

An organized collection of data.The represents some objects from the
data are typically organized to model real world, and used as a support
relevant aspects of reality in a way to a computer application.

that supports processes requiring this — Georges Gardarin

Information

- Wikipedia

A structured collection of data that is
made accessible to a computer, in
order to satisfy several users
simultaneously in a timely fashion.

— Claude Delobel

A structured collection of data
that is accessible from several

users in a selective manner. A collection of data managed by
a DBMS and associated to a single
application.

~ Our definition

e We adopt a more generic definition

A database is a collection of data that is accessible from a common
entry point

e All the other aspects (storage medium, list of operations, concurrent access, existence of a
computer application, ...) will depend on the context; most of them are under the responsibility
of a DataBase Management System (DBMS)

o Examples of DBMSes : Oracle, MySQL, MongoDB, ...
o An operating system is also a kind of DBMS, through its filesystem APIs

Operations

& Tesnlte Database(s)

The French abbreviation for DBMS is SGBD (Systéme de Gestion de Bases de Données)

0

Databases history

Late 50s’, early 60’

In those days...

e Storage took place on magnetic tapes
e Data inpud used to be done with punch cards

Data was managed as files, with several limitations:

Little flexibility in data structures

Sequential access only (tapes)
o Data had to be read or written in a predetermined order

e As aconsequence, data was often redundant and inconsistent
The applications had to take care of physical data access themselves

e No atomicity of data updates
o Example: debit and credit of a same amount on two different accounts
Simultaneous access by several users was hard to implement
e No security policy (access rights, confidentiality)

- Late 60s’, early 70’

In those days...

° Hard disks allowed direct access to random pieces data - no more sequential access
The navitation models (network & hierarchical) were the most common ones

° Data navigation used abstractions such as “pointers” and “paths”
Limitations

° More complexity as the amount of data increases
o Increase in the number of pointers
o Possible redundancy (and thus inconsistency) with the hierarchical model
° No standard interface or language for defining and manipulating data
° Rigid data structures
o Moving relationships around between entities was hard
o The model was not fit for modelling many-to-many relationships
° Hence, complexity of developing applications on top of such databases
o Besides, the access path the entities had to be coded into the applications

Several modern NoSQL databases feature network (graph) and hierarchical (document) models. Some limitations above still

apply - they are no more constraint brought by technology but are considered a trade-off for performance. Beside, rigidity is less
of an issue because many NoSQL DBMSes offer alternative access methods to pieces of data.

Database models from 1970s

Hierarchical

e Only one owner per
record

e Information can have
a complex structure
(types, lists, nesting)

Network

The consumer needs
to know the access
path

e.g. relationship
between people to
model a social
network

Late 60s’, early 70s’ (cont’d)

e Edgar Franck and Ted Codd formalize the relational model
o Ted Codd received the Turing Price in 1981 for his work

° Prototypes for relational DBMSes appear
o System R at IBM
o Ingres at UC Berkeley

e Pros of the relational model
o Relational modelling is simple - everybody understands tables
o SQL (Structured Query Language) allos one the query data without knowledge of its physical
layout on disk

Limitations

e Legibility: the simple model (“Everything is a table”), though versatile, makes some relationships less
apparent (e.g. hierarchies, inheritance)

e With the upcoming of object-oriented language, the “impedance mismatch” between the relational
and object models makes data mapping difficult

- Example of a relational model

customers

; orders
customer id INTEGER

first_name CHAR(20) order id INTEGER
last_name CHAR(20) order_date TIMESTAMP
- CHAR(6) shipping_ad CHAR(30)
street name CHAR(25) customer_id INTEGER
TSl CHAR(25)
Zip_code CHAR(25)
city CHAR(25)

street_no

orders_lines

products :
order id INTEGER

product id INTEGER order line id INTEGER
name CHAR(30) quantity INTEGER
product_id INTEGER

80s’

e Prototypes initiated in the 70s give way to commercial products : Oracle, Ingres,
Sybase, ...

o

SQL is becoming an industry standard

e Beginning of parallel and distributed DBMSes

e Beginning of object-oriented DBMSes, with limited success

@)

O 0O O O O O

Main database vendors are reluctant to implement this new approach; the market sticks to the
relational model

Steep learning curve

Low performance of the implementations the available

Maintenance operations are slow

No standard, hence a strong dependency on the vendor APIs

The object-relational model, described later, proved simpler and more valuable

Today, ORM and NoSQL datastores are much more common

90s’

Appearance of business intelligence and data mining applications

Appearance of large data warehouses (several terabytes)

Emergence of the e-commerce industry

Appearance of the object-relational model, to overcome some limitations of the
relational model

Such limitations are:

o Lack of pointers easing navigation in the model
o Lack of complex types (user data structures, collections, inheritance, ...)
o Lack of operations built into the model (i.e. methods)

The object-relational model (OR model) is not to be confused with object-relational mapping (ORM)! Despite the
limitations overcome by the OR model, the relational model is still widely used today. The ORM offer an alternative

workaround to those limitations, and addresses them in the application layer — not in the data layer as the OR model
would do.

2000s’

e Database administration is more and more automated

e XML and related standards (XQuery...) are thriving : XML database appear

e But XML databases never really made it
o Most relational databases now feature XML extensions,
o When needed, XML is usually stored in the database as raw text or BLOBs

- Late 2000s’, 2010s’

e E-commerce, social media and online advertising are thriving : Amazon, Google, e-Bay,
Yahoo!, Facebook, Twitter, ...

e Forthose “Internet giants”, the relational model is completely unable to handle their traffic
and the volume of data they generate - performance is a crucial issue directly linked to their

revenue

In 2006, Facebook has deployed a click stream monitoring, how much data do they get in one day ?

e NoSQL datastores appear in those years, as alternatives to traditional (relational)
DBMSes

e Emergence of Big Data
o Today’s drivers for Big data: social networks, personalized experience, M2M
(Machine-to-Machine traffic), loT (internet of Things)

Relational databases are still widely used today and won’t disappear anytime soon.

The mentality has shifted from “one size [relational] fits all” to “the right tool for the job”

2015 - 2017

e \We see new storage patterns like the blockchain
o The storage is massively distributed with distributed consensus
e NoSQL databases market is growing and there is a professional supports assured bu
an editor behind every NoSQL systems (MongoDB, Cassandra, ...)
e Data Lake pattern appears and become a trend, at company scale
The DMBSes are commodities. We don’t look anymore as strategic assets.

® Oracle Database ® MongoDB © PostgreSQL ® Apache Cassandra
Topic Topic Topic Topic

Jan 1,2004 Jun 1,2010 Nov 1,2016

We see a change in the mindset of companies. Board directories see the IS as a new vehicle for value

creation. The mentality has shifted from “cost reduction at every level” to “investment in
innovation and new usages”. We talk about digitalization.

Example of NoSQL data models

Document-oriented (e.g. MongoDB) Column-family aka BigTable (e.g. Cassandra)
{ ‘_id’: 123456,
1} 0o 1 1]
type': ‘product’, comput | cpu_GHz brand=Del
'name': ‘computer’, ef p :_q ram_GB=8 ;
1, I
features': | rpm=100 voltage=22
'cpu_GHz": 3, blender 00 OV 50 Hxz
‘ram_GB': &,
‘brand’: ‘Dell’
}
] choupi9 d=AzZnxl 08/09/13= 10/09/13=
[©id’: 123457, £ fgne
'type': 'product’,
[2 I]
,;':g:fr'e:,:e{"der ’ Key/Value pairs (e.g. Redis)
‘rpm': 10000, “rype=product;name=compuier;cpti—GHz=
3 'llo’fage’.' ‘220V 50 Hz' “?ypc—pl udubl‘,uulﬂ’e%fdef;rpﬂfmﬁoo_
P
“type=user;login=choupi92;password=...*
{ ¢_id’: 123458,
‘type’: ‘user’
'‘password'’: '‘Aznxy,03==", pou
1, 2 2 T
j shopping_history': ... \ Sty

2017-2020

DistributedSQL databases make their apparition

e The return of data warehouses despites hype around data lake pattern.

e Eventdriven architectures make their appearance
o Confluent Kafka is one of the event architecture drivers

e Cloud computing is rising up. Move to cloud strategies are settled by companies to
accelerate.

https://www.confluent.io/lp/confluent-kafka/?utm_medium=sem&utm_source=google&utm_campaign=ch.sem_br.brand_tp.prs_tgt.confluent-brand_mt.xct_rgn.emea_lng.eng_dv.all_con.confluent-general&utm_term=confluent&creative=&device=c&placement=&gad_source=1&gclid=Cj0KCQjwpP63BhDYARIsAOQkATbqsr_ifS27Wg3Cfkwk3Tv6HbiqeKR_xilGdolPVu9sdWEUUoNMWrQaAohZEALw_wcB
https://blog.octo.com/compte-rendu-matinale-accelerate-la-vitesse-conditionne-lexcellence-un-nouveau-paradigme-dans-le-developpement-logiciel

2020 - now

e MLOps patterns become trendy
o Infact, 80% of data science projects never go to production

e databases-as-a-service (dbaas) services help a lot to create and manage multiple
kinds of databases. They are a de facto standard to deploy and use databases.

e Modern SQL PRQL

e LLM and generative Al solutions arrive close to the developers
o Github Copilot, Jetbrains Al, Cursor, ChatGPT, ...

https://ml-ops.org/

- To keep in mind

History of databases

1970s 1980s 2010s

DBMS offers an abstraction to : DBMS are commodities. They are
ensure physical data Relational model hglps to easy to deploy, to maintains and
independence and expose data model complex business requires less expertise that in the

through a conceptual data model domain in a standard way. past

everybody understands tables Each DBMS has a learning curve
for your organization.

2015s 2020s

New paradigm as the Big Data or the Blockchain offer Data warehouses and data lakes are common

new ways of thinking about data. At the end, some design pattern in company but data management is

concepts are still present as the research of physical still an area of research ;-)

data independence. Cloud is a de facto standard when deploying /

Data are omnipresent and cross the border from the maintaining / using databases

information system. It requires great effort to manage e SQLis still the most principal approach to query data

them. e MLOps combine the both between data science &
data-engineering

03

High-level concept

Structuration of data

Data comes in 3 flavors : structured, semi-structured and unstructured.

The data conforms to a
predetermined structure

The structure is a strong invariant of
the data model

All records of the same entity type
share the same format

Examples: tables in the relational
model, XML with DTD/XSD

Pros
. Easy processing since the structure
is known in advance
U Data quality is enforced

. Too restrictive for some types of data
(emails, documents scanned as
images, ...)

. When the structure changes, what
about existing data still in the old
format?

The data has no structure; the only
known type is ‘object’

Objects are considered opaque
buckets of bytes, sometimes called
BLOBs (Binary Large OBjects)

Examples: raw files, data streams

Pros

. Can store anything including

heterogeneous or changing data
Cons

. There is no metadata for the
structure, so data cannot be
interpreted without an accompanying
program that knows how to read and
write them

A kind of hybrid between the first two
flavors

One still deals with unstructured
objects, but they bear some
meaningful metadata

. Example metadata: tags (an object
can have as many tags as
necessary), relationships

Examples: XML and JSON
documents in general, objects from
most NoSQL databases, documents
in a search engine

Pros

. The metadata give meaning to
objects, without the rigidity of a full
structure (compare Gmail tags with
Outlook folders @)

Cons

. Besides metadata, the contents of
the objects themselves are
unstructured so one still needs to
know how to interpret them

Schema

A schema is an invariant on the data managed by a system : it imposes constraints on the data.
o A fixed number of types (usually of entities manipulated in the business domain)

] Car - Road - Driver

o A fixed set of attributes for each type
m Car: brand, color, wheels, licence plate #, owner
m Road:name, GPS positions, traffic condition
m Driver:identity, licence #, cars owned

o Additional constraints that apply to entities, attributes and their relationships
m Thedriver must be 18 years old
m Driver’s licence # is mandatory
m Acarisownedby O, 1 or 2 drivers

The schema is usually stored along
with the data, so the DBMS can
enforce it

The data bears no schema, so the
schema is implicit and encoded in
the programs that manipulate the
data

. There are 2 levels of schemas
. The metadata schema, usually very
simple, is managed by the DBMS (or
search engine)
The implicit schema for the
unstructured payload, is encoded in
programs

Data quality

We have seen that only structured data and (to a lesser extent) semi-structured data have a schema
that constrains their contents

Even the most elaborate schema is designed and precise, it's a technical vision of how the data should
conform : it cannot capture all the business constraints and processes that rely on good quality of data

Customer Name Sales Customer Name Sales
John ROBERTS $1000.00 ’ Total sales John ROBERTS $1000.00
by custfomer ¢ Jonh ROBEIRS $200.00

Total sales
by customer 2

g

MISSING $200.00

A schema can disallow missing values But a schema can't correct typos!

Data quality is the sum of 3 correlated concepts :
o An objective measurement of compliance made on actual data and relying on schema and additional rules as
m Completeness of data
m Integrity checks + ...
o A process where the above measurement is made on a regular basis, with corrective measures taken by designated
“data owners”
o A set of (usually expensive) tools implementing the process and measurements
Data quality problems always happen but they are normally not a huge deal
o Some exceptions : very bad quality, final reporting (data warehouse), regulatory and compliance reporting,
customer relationship management, and... open data :)

Functional dependency

Jean-Louis Berger 02/01/1980 83 rue Marie de Médicis Rock en seine Saint-Cloud, France
BIARRITZ
Patrice Mercier 06/03/1965 26 rue des six fréres Rock en seine Saint-Cloud, France

Ruellan SARCELLES

Celestine Vernier 24/08/1997 83 rue Banaudon LYON Rock en seine Saint-Cloud, France
Jean-Louis Berger 02/01/1980 83 rue Marie de Médicis Aluna Ruoms 07120, France
BIARRITZ

In relational database theory, a functional dependency is a constraint between two or more columns in a table
As a database designer, you have to identify the functional dependencies in your database schema to avoid
data duplication. It's a basis for the database design rules called normal form.

Normalization aims to free the database from update, insertion and deletion anomalies

name — birth_date, address
festival — festival_address

Entities, keys and identifiers

e Example: a database is used to store employees’ characteristics
o Their first and last names
o Their birth date
o Their social security number
o Their salary, and so on

e We want to be able to create new records for new employees, to update a person’s record upon modification
(e.g. araise), or to remove it if they leave the company

John Doe Mary Smith

Born on 01/02/1961 O Born on 04/23/1975

SS no. 123456 . SPFO5 SS no. 33333

Monthly salary $3000.00 opiitly salary $2/090 Monthly salary $6400.00
Modify John Doe’s Mary Smith has

salary resigned

Entities, keys and identifiers (cont’d)

In many cases, the data stored represents objects from the real world
o There are exceptions: e.g. logs dumped for future analysis

Those “real” objects are called entities — entities usually have a type
o Example: “John Doe” is an entity of type “Person”

In order to be retrieved and manipulated, each entity must be distinguished from the other entities stored
alongside it. For this purpose, one of several attributes of the entity must be unique across all entities of the
same type in the database: those attributes are called keys

Among all the possible keys, one of them is usually chosen as “the” identifier. It is often called the primary
key

o Example for structured data: the social security number of a person

o Example for unstructured data: a file name, including full path (metadata)

stability: once created, the primary key of an entity must never change, because programs or other data may
rely on it (cross-references...) !

Entities, keys and identifiers (cont’d)

Sometimes, it is difficult to find a good primary key

o Example: in some countries, the social security number cannot be stored in databases for privacy
concerns. A person’s name is not guaranteed to be unique or stable. Neither is the couple made from a

person’s name and their birth date

In those cases, one can resort to use a unique, machine generated number as the primary key. This is often

called a surrogate key

. All other attributes may change without breaking the
principle of stability of a primary key

There is little risk of privacy issues, for the key at least

. A surrogate key may be used even when not strictly
necessary — just in case, for convenience (DBMSes
usually support them well) or performance reasons
(manipulating integers is much faster than text data)

. A surrogate key is also a means to store several
versions of an entity, each having its own primary key
but with all other key fields being equal. This does not
violate the principles of a primary key: uniqueness and
stability

. Manipulating machine-generated IDs can be difficult

for non-technical people (e.g. end-users of an
application)

. As a consequence, sometimes, people tend to adopt a
surrogate key as a business, meaningful key (e.g. “the
customer no. 12345”), so beware...

In some contexts (distributed systems with several
computers in interaction), generating truly unique
numbers can be difficult

Entities, keys and identifiers (cont’d)

*

Source of unique ID#
for surrogate keys

ID# 23 ID# 45

John Doe Mary Smith

Born on 01/02/1961 Born on 04/23/1975

SS no. 123456 SS no. 33333

Monthly salary $3000.00 Monthly salary $6400.00

CRUD Operations

e All databases provide a minimum set of elementary operations that can be performed on an entity
e This set of operations is called CRUD

CREATE i.e. Store a new object

READ i.e. retrieve an object from the store

UPDATE i.e. modifying the properties of an object
DELETE i.e. remove an object permanently from the store

e The CRUD operations at least identify entities by their primary key; some databases offer additional, more
flexible data access means

o Example 1: raise all employees from the Sales department whose salary is below $2,000 and who have
been in the company for more than 3 years
o Example 2: compute the sum of all salaries in the company, broken down by department

Transactions

Suppose the marketing department is being merged with the sales department. We want to :

O
O

ID# 1
Sales Dept

L

p

ID# 2
Marketing Dept

AV

. = impacted entity at step n

delete the no longer existing marketing dept
then change the department of all marketing people to sales

ID# 23
John Doe
Sales Dept (#1)

ID# 78
Mary Smith
Marketing Dept (#2)

.

ID# 84 ‘

Jean Poiré
Marketing Dept (#2)
o
@ A
ID# 4
Ronald King Jr il
CEO
_ Y

Transactions (cont’'d)

e Step 1:remove the marketing department from the database

ID# 1 ID# 23 ID# 84

Sales Dept John Doe Jean Poiré
Sales Dept (#1) Marketing Dept (#2)
ID# 78 ID# 4
Mary Smith Ronald King Jr lll

Marketing Dept (#2) CEO

Transactions (cont’'d)

o —Step-t-remove-the-marketing-departmentfrom-the-database-

e Step 2: move employee #78 to the sales dept

ID# 1
Sales Dept

>
ID# 23
John Doe
Sales Dept (#1)
4
)
ID# 78
Mary Smith
Sales Dept (#1)

ID# 84
Jean Poiré
Marketing Dept (#2)

\

ID# 4
Ronald King Jr il
CEQ

Transactions (cont’'d)

o —Step-t-remove-the-marketing-departmentfrom-the-database-
o —StepZ2-moveemployee#/8tothesalesdept—
e Step 3: move employee #84 to the sales dept

o The program crashes !

4) @
ID# 1 ID# 23 ID# 84
Sales Dept John Doe Jean Poiré
Sales Dept (#1) Marketing Dept (#
& 4 &
4) i
ID# 78 ID# 4
Mary Smith Ronald King Jr i
Sales Dept (#1) CEO
- J -

Transactions (cont’'d)

e A transaction is a unit of work performed by a database. Data manipulation operations are said to be
“wrapped” in transactions
o Every operation, including elementary CRUD, occurs inside a transaction, even if the programmer didn’t
ask one (those are implicit transactions)
o The programmer can explicitly open and close transactions, if she wants to wrap several operations in a
single transaction

Transaction G Beginning
. . . Operations
e With many DBMSes, especially the relational DBMSes, a Operations -
transaction respects the ACID properties Operat'of‘_f‘

o Beware ! Most NoSQL databases use other models ! e End
ATOM|C|TY all operations in a transaction are either confirmed or cancelled at the end of the fransaction
CONSISTENCY before and after a fransaction, the data is globally consistent
ISO LATION simultaneous fransactions don't see each other’'s modifications (the data they see doesn't change unexpectedly)
DU RABl |_|TY once confirmed, the data is written to disk and will not be lost if the database crashes afterwards

Transactions (cont’'d)

e When a transaction begins, it is said to be opened

e When it finishes successfully, it is said to be committed

e In contrary, in case of an error or a problem, it can be rolled back at any time during the course of its execution
o To ensure atomicity, a rollback cancels all operations that were made by the transaction since its

beginning
Commit :
) Committed
egin :
Opened ; - Closed
] Rolled
Rollback - back

e Opening, commit and rollback are make
o by y the programmer, explicitly
o by the DBMS, for implicit transactions or when it encounters an error like a technical failure or a
violation of the consistency property upon commit
m Temporary violations are OK as long as they are cleaned before commit

Transactions (cont’'d)

e Back to step 3 of our example, assuming we wrap our sequence in a transaction
o After rollback, the database is left unchanged, ACID’s A and C properties are satisfied

- -
ID# 23 ID# 84
John Doe Jean Poiré
Sales Dept (#1) Marketing Dept (#

&

4 A
ID# 78 ID# 4
Mary Smith Ronald King Jr llI
Marketing Dept (#2) CEO

& &

- To Keep in mind

High-level concepts

STRUCTURATION OF DATA DATA QUALITY

ENTITY & KEYS TRANSACTION

04

Who use databases ?

People around databases .
, Architects, developers
BeCOUSG “”’S nOT JUST a SOﬁWGre” Architects and developers design the database

. schema (structure) of applications, so they meet
BUSIneSS AnO |YST (BA) users' business needs. They write the application
code that interfaces with the database, with help

BAs usually don't use the database themselves,
from the DBAs or other architects.

but design conceptual models from which
database models are derived.

Databases and apps

Sometimes databases and applications consume
each other's data. Common examples are
multi-database applications and datawarehouses.

Application User

Most applications use a database to host their
data. Application servers or software are clients to
the DBMS; each application then has its own
private database.

databases

Data Scientist / Data Engineer

Those users are both computer and
mathematically literate. They crunch data directly

The DEAI5:0 BEMS spacialist who arsues Hiar from the database, often with specialized software

Qatabeses ore v.vorkmg propfa - aLol tmes, Thoy that allows them to build statistical models after the
are responsible for backing them up, and for o
tuning the DBMS to maintain acceptable . seeRaRsR pipalinen
Reporting User

performances. As experts, they often advise
developers of best practices. Reporting users use specialized (often expensive) software to
produce business reports from the database. Such users
range from the SQL-proficient business user hacking in Excel
("power user”), to the CEO who can't tell a mouse from a
USB key but still wants a financial report on his desk every
Monday morning.

0]

Database Management
System (or DBMS)

~ Summary

SHARING DATA CONSISTENCY & INTEGRITY

SERVICES TO THE CLIENT ANATOMY OF A DBMS

OF QUERIES AND HOW THEY
ARE HANDLED

An analogy

' ARESTAURANT |

AIEAARN

A DBMS

Sharing data

A RESTAURANT

) A restaurant can serve dinner to several people at once
) A waiter can take orders from several tables independently
) What's available for dinner is written on the menu: pick your

favorite!

) The course of dinner at the next table does not interfere with
our dinner

) A restaurant can have VIP customers; the management
decide if they are offered free appetizer, a free dinner, or
granted their favorite table

More on security

A DBMS can serve data to several clients at once

It processes requests from several clients independently

The databases and the objects they contain (tables,
collections, ...) are available in the catalog of the DBMS; the
catalog can be queried at any time

Thanks to isolation, work done by a transaction does not
interfere with the other transactions that are opened at the
same time

Many DBMS have security mechanisms that allow fine-
tuning of the access rights for a particular client

Fine-grained security is not really an issue any more, except in strict environments like financial or government institutions. In the old days, users and

applications would share a single database so security was a concern. Nowadays, the standard is *one application with services — one database”. The
application and its services, as fagades, take care of security and nobody else accesses the database directly.
Most NoSQL databases were designed with no security features at all (sometimes this is a concemn, because of the privacy issues brought by big data).

Consistency & Integrity

) The kitchen only keeps ingredients to prepare the meals
that are on the menu, in correct proportions so as to avoid
wasting food

> Exception: when a meal is being prepared, the balance
of ingredients is temporarily not respected

> This temporary imbalance does not prevent other
customers' meals from being prepared

® Food can be found either as raw ingredients (in the
kitchen), or as final dishes served to the customer
> Exception: when a meal is being prepared, some food is in
an intermediate state

® When a customer is done eating, the food is not returned to

the restaurant
> Exception: some restaurants are so bad that this property
may be violated

Relational vs NoSQL

Data managed by the DBMS is consistent, integrity
constraints are respected at any time (Consistency)
> Exception: when a transaction is in progress, some
constraints may not be fully respected until the fransaction
commits
> This is temporary and invisible to other transactions
(Isolation)

Transactions are eventually fully committed or rolled back

(Atomicity)
> When a transaction is in progress, its own view of the data
is changing

When a fransaction is committed, the data is definitely
written to a persistance medium (Durability)
> Exceptions: some DBMSes are so bad that a crash at the
wrong moment can lead to data loss

With many NoSQL databases, those duties are not fulfilled by the DBMS but by the applications (or the client driver). In fact, in the

NoSQL world, paradigms other than ACID are used to deal with data consistency. This is because ACID, though theoretically sound, is
an obstacle to the exireme performance that NoSQL databases aim at achieving. More on this later.

Service to the clients

A RESTAURANT

In case of a problem (burning, spilling, ...), a dish can be
prepared again, keeping the customer satisfied

Customers expect reasonable delays for serving meals,
even when the restaurant is full
> Eventually, if the customers are too demanding, waiters
will lose time satisfying whims instead of doing their job

Customers don't have to know what happens exactly in the
kitchen, nor do they have to know the exact recipe of the
dishes they are served
5 But hygiene inspectors have to know that for their
verification duties

Besides, some dishes may not be on the menu but available
on request
> In other words, the “real” menu may be different from
customer fo customer

A good DBMS features recovery strategies, so data is not lost
and is still consistent after a crash

A DBMS has special data structures (indices) and

optimization strategies to keep response time acceptable

most of the time, even when the amount of data is big or

when there are many clients

> Eventually, if many clients issue requests that conflict with

each other, the server will lose some time coordinating in
order to satisfy the ACID properties. Performance will
deteriorate

Clients don't know how the data is physically stored on disk,
nor do they know the strategy of the DBMS to retfrieve it
efficiently

> But DBAs have to know that for their tuning duties

Besides, the logical view of the database may be a subset
only of the actual catalog
> Different users can have different views of the database,
depending on their rights

Anatomy of a DBMS

- = = e e e e e e e e e e

[

i Catalog

i Query planner
. BNetwork Query executor Data ﬁle‘:s
- Transaction
. interface

Caches logs

Security

Configuration

o e e e e e e S e e e e e e e e e e

Of course, this will vary greatly between DBMSes

Queries and how they are handled

Queries are the basic unit of communication between a database client and the DBMS.

Examples :
o “Getthe characteristics of employee whose |ID# is 78”
o “Raise all employees from the Sales department by 5%”
o “Getthe total sales for region ‘Europe’ that were closed during the last month but for which the

product wasn’t shipped yet 24 hours ago, except when the ‘Slow delivery’ option was chosen by the
customer. Group and sort figures by customers weight in decreasing order”
When the DBMS receives a query, the following operations occur :

o Analysis: the query is checked for validity. For text-based query languages (e.g. SQL), the text is
syntactically parsed. The result is checked against the catalog: are we querying objects that don’t
exist?

Control: security rules (if any) are applied

Optimizing: several execution paths are examined, and the “best” one chosen, according to some
criterion that depends on the DBMS

o Execution: the query is finally executed, data is fetched and if requested, modified. Transactions are
committed or rolled back

o Results: (execution status and possible data requested) are sent back to the client

Common DBMS

MySQOL.

PostgreSQL

HHHHHH

0]

Usage and architecture

~ Summary

DATABASES AS A STORAGE

BACKEND FOR APP CLIENT-SERVER ARCHITECTURE

PRIMARY / SECONDARY
ARCHITECTURE

3-TIER ARCHITECTURE

PEER-TO-PEER (P2P)

EMBEDDED DATABASE ARCHITECTURE

DATA WAREHOUSES, DATA
MARTS

DATA HUB / DATA LAKE / LAKE
HOUSE

databases as a storage backend for an
application

-0 B 0 i

e ——. .= ——— ERTR

SuperCRM'’s
database

SuperCRM, a customer
relationship application

o Thisis the most common usage for a database

o In this case, a piece of software uses the database as a persistent storage
> Datais not lost when the application crashes, is shut down or the user disconnects
> Several users of the same application share the same data

o This access pattern is called OLTP — OnlLine Transactional Processing

(Many read and write requests to the DB (say, 50% reads, 50% writes)

OLTP = <
\\ A majority of precise requests, each affecting a limited number of entities (cf CRUD)

databases as a storage backend for an
application (cont’d)

Gj =

A =

Qmi

One server, several clients to the database connecting at once
Old-fashioned architecture, typical from the 1990's, before the emergence of the web architectures. We don't
get to see it often nowadays
All data is stored in one place, so all clients (all users) see the same version of the data

> Except when they are in the middle of a transaction, with the isolation property
The DBMS must be able to handle as many concurrent connections as necessary; this can be challenging if there
are many users

databases as a storage backend for an
application (cont’d)

PRIMARY / SECONDARY ARCHITECTURE

Primary

Qi

User

User

-
>
—

4 o database
1 data replication
cluster

=
—

Secondary

) Several servers (called nodes) form a database cluster; there is one primary node and one or several secondary nodes

[All data is replicated between the primary and the secondary nodes

® Active / Passive cluster

>

>
>
>

Clients connect to the primary node

The secondary node just mirrors data

When the primary node crashes, the secondary node takes over so clients can still be served
In most cases, data modification on the secondary node is forbidden

[Active/active cluster (also called multi-master cluster)

>
.
>

Clients connect to any node, primary or secondary, and can make modifications
Some rules must be declared to handle modification conflicts
If a node crashes, any other node can serve clients

Availability and load-balancing
for read operations only

Availability and load-balancing
for read and write operations

databases as a storage backend for an
application (cont’d)

O

] =
’ T (with DBMS client)
O

Clients don't connect to the database directly, but to an application server, e.g. a node server, java spring mvc.
The application server talks to the database
This is the standard architecture for web applications (but not only)
All data is stored in one place, so all clients (all users) see the same version of the data

> Except when they are in the middle of a transaction, with the isolation property
The application server, as a database client, has a pool of connections that are shared among clients, and
reused as necessary. This way the DBMS only sees a predictable and lower number of connections, whatever the
number of end users

databases as a storage backend for an
application (cont’d)
Quil

A =

Omi

(0 (0

Each user's computer has its own local database. The database usually comes as a set of files of reasonable size (they hardly
ever reach the GB size)
Convenient for small applications, with no or limited connectivity (think of a salesman fravelling from place to place)

No concurrency issues with this architecture: for any given database there is at most one user connected to it

Backups are very simple: copy the files somewhere else

It's difficult to share data with other users. The local databases can be synchronized on demand with a central database, but
there is always the risk of modification conflicts

technology — sqlite, rockdb, couchbase mobile
use case — mobile application, utility

databases as a storage backend for an
application (cont’d)
Ol

A =

Om

(¢
((((((l

o Several servers (called nodes) form a database cluster, to which several clients connect
e Two possible data distribution strategies:
> Allservers hold complete copies of the same data
> .. oreach server have a portion of the data (a shard); sharding is typical with NoSQL databases
With sharding, when many nodes form the cluster, a huge total amount of data can be stored
Concurrency issues are minimized because clients connect to any node in the cluster
Because of this, it can be difficult (or plain impossible) to ensure concurrency: such clusters are usually not ACID

technology — cassandra, hbase, ...

data warehouses & data marts

Top salesmen by generated

r = p— - \
- revenue, evolution of sales

L =
o A v 7 = -
across years,

S 'Very serious fmancnal
report for the CEO

This is the second most common usage for a database

Datawarehouse
or datamart

(0}
e Reporting softwares produce... reports that query the database
> The database usually contains pre-aggregated data, that is refreshed on a regular basis (every
day/week/month/...) from other OLTP databases
e This access pattern is called OLAP — OnlLine Analytical Processing
(Mostly reads; writes are very rare or occur upon refresh

Those reads often span a large portion of the data, aggregating on the fly

OLAP = <

data warehouses & data marts (cont’d)

Data warehouses and data marts serve two purposes
o Concentrate all (most of) the data of an organization, produced by independent departments, in one
place
o Give a single point of truth of the data, i.e,, that data is clean, approved and shared across the
organization
Those purpose ultimately satisfy the need to make strategic decisions based on complete and accurate data:
this is called Business Intelligence (Bl)
o In French: Décisionnel
While a data warehouse contains “all” the data of the organization, smaller subsets specialized by domain
are sometimes extracted from it; they are called data marts
The data in a data warehouse often comes from several OLTP databases. The data flows from source
applications to the data warehouse
o Most of the time, data warehouses and data marts are refreshed on a daily, weekly, monthly... basis;
data is sometimes streamed but this is rare
o Except for the unattended refresh process, the data is usually read-only, for reporting purposes
Most of data warehouses and data marts are either relational databases, or specialized data structures
optimized for OLAP querying (e.g. cubes)
o NoSQL in the common sense are still rarely seen as data warehouses, because reporting software
strongly rely on
SQL for querying. This is changing as some NoSQL databases are beginning to support at least some subset
of SQL
o For this reason, data warehouses rarely capture important unstructured data of an organization, e.g.
emails, documents, ...

data warehouses & data marts (cont'd)

o Datais fransported by specialized bulk software called ETL - Extract, Transform, Load; reflecting the way that
datais handled

> The data model in the various databases differs from each other, so transformations are needed to map, enrich, clean, ...
the incoming data

Operational Systems and Referentials) Bl Systems ' .
(French: SIO - Systéme d'Information Opérationnel) (French: SID - Systeme d'Information Décisionnel)
M p.
i \ F A

customers data mart

Sales
e sales data mart
—

CRM
Accounting 1 \ o '

data mining [
data engineer

data scientist reporting

data hub & data lake

o Datais fransported by specialized bulk software called EL - Extract and Load, reflecting the way that data is handled
> On the platform itself, transformation and modelisation process happens on the datastorage directly and don't rely on
operational systems
> Distribution of data and applications are built over the platform in a layer called services

data lake

E r
Sales
=S — <)'_—:>
)
= o N— L
= =)
L J 8' DATA STORAGE EVENT HUB PROCESSING

CRM (| PIPELINE
Accounting ' @

O

. 2 = O
data mining gﬁ' gﬁ'

data engineer
data scientist

SERVICES

\

LakeHouse

Début des années 90

Bl / Reports

Datamarts

A
|
\ lll
L A

Data Science / ML

Data
preparation

Datalake

>

all|

81/ Reports @ @v

Bl /Reports Data Science / ML

Datamarts

/% NN
J
>
S

Donneées structuréees, non-structurées

- To Keep in mind

DATABASES AS A STORAGE PRIMARY / SECONDARY
BACKEND FOR APP ARCHITECTURE

EMBEDDED DATABASE
DATA WAREHOUSES, DATA DATA HUB / DATA LAKE / LAKE
MARTS HOUSE

DOJO

THE END

